MATLAB代码:基于多目标粒子群算法冷热电联供综合能源系统运行优化
关键词:综合能源 冷热电三联供 粒子群算法 多目标优化
参考文档:《基于多目标算法的冷热电联供型综合能源系统运行优化》
仿真平台:MATLAB 平台采用粒子群实现求解
主要内容:代码构建了含冷、热、电负荷的冷热电联供型综合能源系统优化调度模型,考虑了燃气轮机、电制冷机、锅炉以及风光机组等资源,并且考虑与上级电网的购售电交易,综合考虑了用户购电购热冷量的成本、CCHP收益以及成本等各种因素,从而实现CCHP系统的经济运行,求解采用的是MOPSO算法(多目标粒子群算法),求解效果极佳,具体可以看图
基于多目标粒子群算法的冷热电联供综合能源系统优化
随着能源消耗的不断增加,能源供应的可持续性和经济性受到了越来越大的挑战。由此,冷热电三联供的综合能源系统成为了可行的能源转型方案之一。然而,在实际应用过程中,冷热电三联供综合能源系统面临着许多难以解决的问题,例如资源分配的不合理、系统运行的高成本等。
为了解决这些问题,本文基于多目标粒子群算法,构建了一种冷热电联供型综合能源系统优化调度模型。该模型考虑了燃气轮机、电制冷机、锅炉以及风光机组等资源,并且考虑与上级电网的购售电交易。综合考虑了用户购电购热冷量的成本、CCHP收益以及成本等各种因素,从而实现CCHP系统的经济运行。
在该模型中,我们充分利用MATLAB平台的优势,采用粒子群算法进行求解。多目标优化是粒子群算法中一种重要的求解方法,它将多个优化目标同时考虑进来,将多个目标的优化问题转化为一个多维空间搜索问题。因此,我们使用多目标粒子群算法(MOPSO)进行求解,将优化问题转化为一个多目标决策问题,从而找到一组最优解,可以有效提高综合能源系统的性能和经济性。
该模型在实验中的表现也得到了验证。通过模型的求解,我们得到了一组最优解,同时考虑了用户购电购热冷量的成本、CCHP收益以及成本等各种因素,从而实现了CCHP系统的经济运行。同时,该模型还考虑了与上级电网的购售电交易等问题,为综合能源系统的稳定运行提供了保障。
总之,本文在MATLAB平台上基于多目标粒子群算法,构建了一种冷热电联供型综合能源系统优化调度模型,该模型在实验中表现出极佳的求解效果,可以有效提高综合能源系统的性能和经济性。此外,该模型还综合考虑了用户需求、CCHP收益和成本等多个因素,为综合能源系统的稳定运行提供了保障。
相关代码,程序地址:http://lanzouw.top/662269578775.html