基于张量网络的机器学习(六)

  在上一次的学习中,我们从TT分解借助新的张量表示方法过渡到了矩阵乘积态,可以说矩阵乘积态(MPS)的另一个别称为TT分解,现在,让我们再一次看看以下两个概念。

  1. 截断维数 χ \chi χTT秩:截断维数实际上就是TT分解(或MPS)中辅助指标能取的数的个数(最多的),然后借此引入了TT秩,它是一个n维数列(向量),里面每个元素就是每个辅助指标所存在的能取的最小的个数截断维数TT秩是在不作任何近似时引入的概念,但如果不作任何近似,随着张量阶数增加,截断维数会指数增加,这样下来,我们遇到了“指数墙”问题,然后我们又极小化辅助指标,这就是最优化TT低秩近似,但这并未解决“指数墙”问题。
  2. 矩阵乘积态(MPS):给定的是一个量子态,将其表示为多个基态(自旋)的叠加,每个基态前面的系数满足TT形式,然后我们就可以直接假设一个量子(多体)态可以表示成一个MPS态,然后我们不关心原来的那个完整的量子态的具体情况,而是直接去处理MPS态,如此就绕过了“指数墙”,但也由此引入了误差,我们怎么去衡量误差,或者说这个MPS态的有效性?那就得考虑奇异谱了,接着又引入了斯密特分解,我们可以借此得到纠缠谱。(我们还可以借助纠缠谱和香农熵的定义来定义并计算纠缠熵,纠缠熵刻画信息量的大小,刻画误差的大小,也可以看这个MPS态的有效性如何)

  所以现在,我们想要计算MPS态的斯密特分解来得到纠缠谱进而计算纠缠熵来衡量这个绕过了指数墙的MPS态的有效性的大小。

一.纠缠熵

纠缠熵

  对于一条信息,我们很难知道这条信息带给了我们什么,或者说这条信息内在的信息量多大,然后又发现一条信息的信息量大小和它的不确定性有直接的关系,由此引入了香农熵,借助香农熵,我们定义纠缠熵:
在这里插入图片描述
  我们暂时不用去仔细关注这两个概念,只要知道纠缠谱和纠缠熵密切相关,纠缠熵又与本次学习所要达到的目的——衡量误差密切相关,接下来才是正餐。

量子纠缠

  在MPS态中,我们考虑每个基态都是自旋,这也意味着系数(概率幅)满足归一化条件,这和香农熵以及纠缠熵是相匹配的,又因为MPS可以借助SVD分解,里面的矩阵满足正交性条件,于是给定一个MPS态,其系数:
在这里插入图片描述
当满足以下正交条件:
在这里插入图片描述

Λ \Lambda ΛkMPS给出的前K个自旋与其余自旋之间之间的纠缠。

二.矩阵乘积态的规范自由度和正交形式

矩阵乘积态的规范自由度

  为了计算MPS态的斯密特分解,我们将满足左正交条件的矩阵收缩为SVD中的左奇异矩阵,满足右正交条件的矩阵收缩为SVD中的右奇异矩阵,即将MPS变换成SVD形式,这样的操作不会改变原量子态,故称为规范变换;同一个量子态可由多组由不同的张量组成的MPS态来表示量子态的系数,这称为规范自由度,这其实就像许多人鼓励其他人改变内在而不必执着于外在。
  开放边界条件下MPS态的规范变化以下图为例:
在这里插入图片描述
这张图很直观,红方块和蓝蓝方块互为可逆矩阵,它们的矩阵乘积为单位阵,如果我们不规定约束条件,不固定MPS态的规范自由度,就会使得MPS态的表示不止一种,而一般的约束条件就是前面的左右正交条件。.

正交形式

  1. 中心正交形式
    当张量{𝐴(𝑛) }( 𝑛<𝐾 )满足左正交条件,{𝐴(𝑛) }( 𝑛>𝐾 )满足右正交条件时,MPS被称为具有𝐾-中心正交形式。
    在这里插入图片描述
    红色箭头代表正交条件的方向。
  2. 正则形式
    给定量子态:
    在这里插入图片描述
    其系数满足:
    在这里插入图片描述
    其中 Λ \Lambda Λn为正定对角阵,以长度为4的MPS态为例,它的图形表示如下:
    在这里插入图片描述
      这里实际上进行了3次奇异值分解,按从左往右SVD来看, Λ \Lambda Λ1就是第一个对角阵,相当于第一个二分纠缠谱,对比中心正交形式的并未直接显示二分纠缠谱(而是借助中心张量求得中心张量的奇异值谱,这个奇异值谱就是二分纠缠谱),正则形式可能会更方便。

接下来主要讨论中心正交形式以及基于此的截断维数的最优裁剪(由矩阵SVD低秩近似的最优性保证,是否有种似曾相识的感觉):

  • 正交中心的移动:通过多次的SVDQR分解进行规范变换,到目前为止,我们讨论的一直都是SVD分解。
  • 利用中心正交形式计算MPS的纠缠谱:借助中心张量求得中心张量的奇异值谱,这个奇异值谱就是二分纠缠谱。
  • 基于中心正交形式的截断维数的最优裁剪:这种最优裁剪其实主要就是在SVD分解过程中奇异值矩阵只保留前 χ \chi χ个奇异值和对应的奇异向量, χ \chi χ就是截断维数,其基本步骤是首先确定要裁剪的第K个辅助指标,然后将MPS态中心正交化,将正交中心移动至第k个张量,再对这个张量进行奇异值分解,最后更新第KK+1个张量。

三.提出问题

现在让我们考虑以下几个问题:

  1. 斯密特分解时的系数矩阵中的元素是什么?怎么排列的?
  2. 有关MPS态绕过“指数墙”的问题?
  3. 截断维数 χ \chi χ是怎么确定的?
  4. 一个高阶张量矩阵化后的元素怎么排列的?

  上面的这些问题,有些是比较模糊的,可能涉及更细节的东西,有些现在我也只知道部分答案,在以后的每次博客,我会提出一些关于此次博客的问题,并尽量在下次或再往后的博客中解答,也会指定下次博客的方向,我相信这会是一个好的开始,下次学习的主角是TEBD算法。

参考资料链接:https://www.bilibili.com/video/BV17z411i7yM/

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值