(11) 矩阵乘积态的规范自由度与正交形式

引出:

问题:如何计算MPS的斯密特分解的方法(即在不改变其所表示的量子态的前提下,将MPS变换成下述中心正交形式(SVD形式))
在这里插入图片描述

1.解决方案:规范自由度

规范变换(gauge transformation):改变MPS中的tensor,但不改变其所表示的量子态
MPS的规范自由度(gauge degrees of freedom):对于同一个量子态,可由多组由不同的张量组成的MPS态来表示其系数


例子:

例如,可通过如下方式对MPS进行规范变换:已知MPS满足
φ s 1 s 2 … s N = A s 1 : ( 1 ) … A s n : : ( n ) A s n + 1 : : ( n + 1 ) … A s N : ( N ) T \varphi_{s_{1} s_{2} \ldots s_{N}}=A_{s_{1}:}^{(1)} \ldots A_{s_{n}::}^{(n)} A_{s_{n+1}::}^{(n+1)} \ldots A_{s_{N}:}^{(N) \mathrm{T}} φs1s2sN=As1:(1)Asn::(n)Asn+1::(n+1)AsN:(N)T引入任意可逆矩阵 U \boldsymbol{U} U 及其逆矩阵 U − 1 , \boldsymbol{U}^{-\mathbf{1}}, U1, 定义 B s n : : ( n ) = A s n : : ( n ) U , B s n : : ( n + 1 ) = U − 1 A s n : : ( n + 1 ) B_{s_{n}::}^{(n)}=A_{s_{n}::}^{(n)} U, \quad B_{s_{n}::}^{(n+1)}=U^{-1} A_{s_{n}::}^{(n+1)} Bsn::(n)=Asn::(n)U,Bsn::(n+1)=U1Asn::(n+1)易得同一个量子态的两种MPS表示,有:
在这里插入图片描述


一般而言,MPS规范变换如下图所示,其中,一对红蓝方块代表任意可逆矩阵及其逆矩阵(虚线框):
在这里插入图片描述
将变换矩阵作用到各个张量{ A ( n ) A^{(n)} A(n)}上,得到新的张量{ B ( n ) B^{(n)} B(n)}(点线框),公式如下:
在这里插入图片描述
问题:如何固定MPS的规范自由度(使得给定量子态具备唯一的MPS表示)
:常用的约束条件为构成MPS张量的正交条件

2.MPS的中心正交形式

定义:当张量{ A ( n ) A^{(n)} A(n)}( n < K n < K n<K)满足左正交条件,{ A ( n ) A^{(n)} A(n)}( n > K n > K n>K)满足右正交条件时,MPS被称为具有𝐾-中心正交形式,图形表示如下:
在这里插入图片描述
易得:
(a) 正交中心的移动。可通过多次的SVD或QR分解进行规范变换, 从 K K K -中心正交形式变换成 K ′ K^{\prime} K -中心正交形式 ( K ≠ K ′ ) \left(K \neq K^{\prime}\right) (K=K);
(b) 通过中心正交形式计算MPS纠缠谱。对于MPS的SVD形式可得, 在 ( s 1 , … , s K ) ∪ ( s K + 1 , … , s N ) \left(s_{1}, \ldots, s_{K}\right) \cup\left(s_{K+1}, \ldots, s_{N}\right) (s1,,sK)(sK+1,,sN) 二分下的纠缠谱 Λ ( K ) , \Lambda^{(K)}, Λ(K),
中心处张量 A s K a K − 1 a K ( K ) A_{s_{K} a_{K-1} a_{K}}^{(K)} AsKaK1aK(K)的奇异值谱。有奇异值分解:
A s K a K − 1 a K ( K ) = ∑ β U s K a K − 1 β Λ β ( K ) V a K β A_{s_{K} a_{K-1} a_{K}}^{(K)}=\sum_{\beta} U_{s_{K} a_{K-1} \beta} \Lambda_{\beta}^{(K)} V_{a_{K} \beta} AsKaK1aK(K)=βUsKaK1βΛβ(K)VaKβ
为什么引入正交形式?
作用:1.让MPS态和大张量有一 一对应的关系
2.通过中心正交形式来计算纠缠熵(用MPS辅助指标维数最优裁剪)
为什么计算纠缠熵?
1.想知道MPS态表示合不合理,裁剪误差大不大
2.纠缠熵越大,MPS态需要的辅助指标的维数越大
3.也可以知道辅助维数多大

3.MPS辅助指标维数最优裁剪

基于K-中心正交形式,可对MPS辅助指标维数进行最优裁剪:设需要裁剪的指标为第K个辅助指标,裁剪方法为:
( a ) 进行中心正交化, 将正交中心放置于第K个张量;
( b ) 对中心张量进行奇异值分解 A s K a K − 1 a K ( K ) = ∑ β = 0 χ − 1 U s K a K − 1 β Λ β ( K ) V a K β , A_{s_{K} a_{K-1} a_{K}}^{(K)}=\sum_{\beta=0}^{\chi-1} U_{s_{K} a_{K-1} \beta} \Lambda_{\beta}^{(K)} V_{a_{K} \beta}, AsKaK1aK(K)=β=0χ1UsKaK1βΛβ(K)VaKβ, 仅保留前 χ \chi χ 个奇异值及对应的奇异向量 ( χ \chi χ 为截断维数);
( c ) 将第K个张量更新为 U → A ( K ) U \rightarrow A^{(K)} UA(K)
( d ) 将第 ( K + 1 ) (\mathrm{K}+1) (K+1) 个张量更新为 Σ a K Λ β ( K ) V a K β A s K + 1 a K a K + 1 ( K + 1 ) → A s K + 1 β a K + 1 ( K + 1 ) \Sigma_{a_{K}} \Lambda_{\beta}^{(K)} V_{a_{K} \beta} A_{s_{K+1} a_{K} a_{K+1}}^{(K+1)} \rightarrow A_{s_{K+1} \beta a_{K+1}}^{(K+1)} ΣaKΛβ(K)VaKβAsK+1aKaK+1(K+1)AsK+1βaK+1(K+1)
注:其中(b)中相当于将 a K − 1 a_{K-1} aK1辅助指标的维数截断为 χ \chi χ
上述裁剪也可通过将正交中心放置在第 (K+1) 个张量上来实现。
MPS的中心正交形式对于多个张量网络算法算法极为重要,我们将在后面介绍TEBD与DMRG算法

4.扩展:MPS的正则形式(canonical form)

定义如下:给定量子态 ∣ φ ⟩ = ∑ s 1 s 2 … s N φ s 1 s 2 … s N ∏ ⊗ n = 1 N ∣ s n ⟩ , |\varphi\rangle=\sum_{s_{1} s_{2} \ldots s_{N}} \varphi_{s_{1} s_{2} \ldots s_{N}} \prod_{\otimes n=1}^{N}\left|s_{n}\right\rangle, φ=s1s2sNφs1s2sNn=1Nsn, 其系数满足满足:
φ s 1 s 2 … s N = A s 1 : ( 1 ) Λ ( 1 ) A s 2 : : ( 2 ) Λ ( 2 ) … Λ ( N − 2 ) A s N − 1 : : ( N − 1 ) Λ ( N − 1 ) A s N ( N ) T \varphi_{s_{1} s_{2} \ldots s_{N}}=A_{s_{1}:}^{(1)} \Lambda^{(1)} A_{s_{2}::}^{(2)} \Lambda^{(2)} \ldots \Lambda^{(N-2)} A_{s_{N-1}::}^{(N-1)} \Lambda^{(N-1)} A_{s_{N}}^{(N) \mathrm{T}} φs1s2sN=As1:(1)Λ(1)As2::(2)Λ(2)Λ(N2)AsN1::(N1)Λ(N1)AsN(N)T
图形表示为:
在这里插入图片描述
其中, Λ ( n ) \Lambda^{(n)} Λ(n) 为正定对角阵,对角元素按非升序排列,且满足:
a. ∑ s 1 A s 1 a 1 ( 1 ) A s 1 a 1 ( 1 ) ∗ = I a 1 a 1 ′ \sum_{s_{1}} A_{s_{1} a_{1}}^{(1)} A_{s_{1} a_{1}}^{(1) *}=I_{a_{1} a_{1}^{'}} s1As1a1(1)As1a1(1)=Ia1a1
b. ∑ s n a n − 1 Λ a n − 1 a n − 1 ( n − 1 ) A s n a n − 1 a n ( n ) Λ a n − 1 a n − 1 ( n − 1 ) A s n a n − 1 a n ′ ( n ) ∗ = I a n a n ′ \sum_{s_{n} a_{n-1}} \Lambda_{a_{n-1} a_{n-1}}^{(n-1)} A_{s_{n} a_{n-1} a_{n}}^{(n)} \Lambda_{a_{n-1} a_{n-1}}^{(n-1)} A_{s_{n} a_{n-1} a_{n}^{'}}^{(n) *}=I_{a_{n} a_{n}^{'}} snan1Λan1an1(n1)Asnan1an(n)Λan1an1(n1)Asnan1an(n)=Ianan
c. ∑ s n a n A s n a n − 1 a n ( n ) Λ a n a n ( n ) A s n a n − 1 ′ a n ( n ) ∗ Λ a n a n ( n ) = I a n − 1 a n − 1 ′ ( 1 < n < K ) \sum_{s_{n} a_{n}} A_{s_{n} a_{n-1} a_{n}}^{(n)} \Lambda_{a_{n} a_{n}}^{(n)} A_{s_{n} a_{n-1}^{'} a_{n}}^{(n) *} \Lambda_{a_{n} a_{n}}^{(n)}=I_{a_{n-1} a^{\prime} _{n-1}} \quad(1<n<K) snanAsnan1an(n)Λanan(n)Asnan1an(n)Λanan(n)=Ian1an1(1<n<K)
d. ∑ s N A s N a N − 1 ( N ) A s N a N − 1 ′ ( N ) ∗ = I a N − 1 a N − 1 ′ \sum_{s_{N}} A_{s_{N} a_{N-1}}^{(N)} A_{s_{N} a^{\prime} _{N-1}}^{(N) *}=I_{a_{N-1} a^{\prime}_{N-1}} sNAsNaN1(N)AsNaN1(N)=IaN1aN1
特点为:
1.通过把对角阵放在左边或者右边,控制正交条件的方向
2.每一个 Λ ( n ) \Lambda^{(n)} Λ(n) ,是这个MPS态左右在当前位置下进行二分的纠缠谱(即可以将任何一个地方的纠缠谱显示的写出来)

在正则形式中,每一处的二分纠缠普显式地出现在了MPS的定义中;该定义在研究无穷长平移不变的MPS时,十分有用

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值