引出:
问题:如何计算MPS的斯密特分解的方法(即在不改变其所表示的量子态的前提下,将MPS变换成下述中心正交形式(SVD形式))
1.解决方案:规范自由度
规范变换(gauge transformation):改变MPS中的tensor,但不改变其所表示的量子态
MPS的规范自由度(gauge degrees of freedom):对于同一个量子态,可由多组由不同的张量组成的MPS态来表示其系数
例子:
例如,可通过如下方式对MPS进行规范变换:已知MPS满足
φ s 1 s 2 … s N = A s 1 : ( 1 ) … A s n : : ( n ) A s n + 1 : : ( n + 1 ) … A s N : ( N ) T \varphi_{s_{1} s_{2} \ldots s_{N}}=A_{s_{1}:}^{(1)} \ldots A_{s_{n}::}^{(n)} A_{s_{n+1}::}^{(n+1)} \ldots A_{s_{N}:}^{(N) \mathrm{T}} φs1s2…sN=As1:(1)…Asn::(n)Asn+1::(n+1)…AsN:(N)T引入任意可逆矩阵 U \boldsymbol{U} U 及其逆矩阵 U − 1 , \boldsymbol{U}^{-\mathbf{1}}, U−1, 定义 B s n : : ( n ) = A s n : : ( n ) U , B s n : : ( n + 1 ) = U − 1 A s n : : ( n + 1 ) B_{s_{n}::}^{(n)}=A_{s_{n}::}^{(n)} U, \quad B_{s_{n}::}^{(n+1)}=U^{-1} A_{s_{n}::}^{(n+1)} Bsn::(n)=Asn::(n)U,Bsn::(n+1)=U−1Asn::(n+1)易得同一个量子态的两种MPS表示,有:
一般而言,MPS规范变换如下图所示,其中,一对红蓝方块代表任意可逆矩阵及其逆矩阵(虚线框):
将变换矩阵作用到各个张量{
A ( n ) A^{(n)} A(n)}上,得到新的张量{
B ( n ) B^{(n)} B(n)}(点线框),公式如下:
问题:如何固定MPS的规范自由度(使得给定量子态具备唯一的MPS表示)
解:常用的约束条件为构成MPS张量的正交条件。
2.MPS的中心正交形式
定义:当张量{
A ( n ) A^{(n)} A(n)}( n < K n < K n<K)满足左正交条件,{
A ( n ) A^{(n)} A(n)}( n > K n > K n>K)满足右正交条件时,MPS被称为具有𝐾-中心正交形式,图形表示如下:
易得:
(a) 正交中心的移动。可通过多次的SVD或QR分解进行规范变换, 从 K K K -中心正交形式变换成 K ′ K^{\prime} K′ -中心正交形式 ( K ≠ K ′ ) \left(K \neq K^{\prime}\right) (K=