Spark Streaming

本文介绍了Spark Streaming的基本概念,包括Discretized Streams (DStreams)、数据源如队列和Kafka,以及关键算子如transform、UpdateStateByKey和mapWithState。重点讲解了如何处理故障恢复、窗口操作和反压机制,适合初学者入门。
摘要由CSDN通过智能技术生成

Spark Streaming(流处理)

Spark Streaming是核心Spark API的扩展,可实现实时数据流的可扩展,高吞吐量,容错流处理。数据可以从许多来源(如Kafka,Flume,Kinesis或TCP套接字)中获取,并且可以使用以高级函数(如map,reduce,join和window)表示的复杂算法进行处理。最后,处理后的数据可以推送到文件系统,数据库和实时dashboards。
在这里插入图片描述

在内部,它的工作原理如下。 Spark Streaming接收实时输入数据流并将数据分成批处理,然后由Spark引擎处理以批量生成最终结果流。
在这里插入图片描述

Spark Streaming提供称为离散流或DStream的高级抽象,表示连续的数据流。DStream可以从来自Kafka,Flume和Kinesis等源的输入数据流创建,也可以通过在其他DStream上应用高级操作来创建。在内部DStream表示为一系列RDD。

备注:Spark Streaming 因为底层使用批处理模拟流处理,因此在实时性上大打折扣,这就导致了Spark Streaming在流处理领域有者着先天的劣势。虽然Spark Streaming 在实时性上不如一些专业的流处理引擎(Storm/Flink)但是Spark Stream在使用吸取RDD设计经验,提供了比较友好的API算子,使得使用RDD做批处理的程序员可以平滑的过渡到流处理。

针对于Spark Streaming的微观的批处理问题,目前大数据处理领域又诞生了新秀Flink,该大数据处理引擎,在API易用性上和实时性上都有一定的兼顾,但是与spark最大的差异是Flink底层的处理引擎是流处理引擎,因此Flink天生就是流处理,但是Spark因为底层是批处理,导致了Spark Streaming在实时性上就没法和其他的专业流处理框架对比了。

快速入门

  • pom依赖
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-core_2.11</artifactId>
    <version>2.4.3</version>
</dependency>
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming_2.11</artifactId>
    <version>2.4.3</version>
</dependency>
  • SparkStreamWordCounts
val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(5))
ssc.sparkContext.setLogLevel("FATAL")//关闭日志打印
//在linux系统上,启动端口号为9999的进程,在9999进程输入的数据,就会在这里接收到,方便测试
ssc.socketTextStream("CentOS",9999)
  .flatMap(_.split(" "))
  .map((_,1))
  .reduceByKey(_+_)
  .print()

ssc.start()
ssc.awaitTermination()//等待系统发送指定关闭流计算

注意:[root@CentOS ~]# yum install -y nc启动nc服务
[root@CentOS ~]# nc -lk 9999,注意在调用该程序的时候,代码中设置的setMaster(local[n]),n>1,因为socketTextStream也占用了一个core

概念介绍

通过上述案例的运行,现在我们来一起探讨一些流处理的概念。在处理流计算的时候,除去spark-core依赖以外我们还需要引入spark-streaming模块。要从Spark Streaming核心API中不存在的Kafka,Flume和Kinesis等源中提取数据,您必须将相应的工件spark-streaming-xyz_2.11添加到依赖项中。例如Kafka

<!--和kafka关联-->
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
    <version>2.4.3</version>
</dependency>
  • 初始化 StreamingContext
    要初始化Spark Streaming程序,必须创建一个StreamingContext对象,它是所有Spark Streaming功能的主要入口点。
import org.apache.spark._
import org.apache.spark.streaming._

val conf = new SparkConf().setAppName(appName).setMaster(master)
val ssc = new StreamingContext(conf, Seconds(1))

appName参数是应用程序在集群UI上显示的名称master是Spark、YARN群集URL,或者是在本地模式下运行的特殊"local [*]"字符串。实际上,在群集上运行时,您不希望在程序中对master进行硬编码,而是使用spark-submit启动指定–master配置。但是,对于本地测试和单元测试,您可以传递“local [*]”以在进程中运行Spark Streaming(系统会自动检测本地系统的核的数目)。

请注意ssc会在内部创建一个SparkContext(所有Spark功能的起点),如果需要获取SparkContext对象用户可以调用ssc.sparkContext访问。例如用户使用SparkContext关闭日志。

val conf = new SparkConf()
	.setMaster("local[5]")
	.setAppName("wordCount")
val ssc = new StreamingContext(conf,Seconds(1))
//关闭其他日志
ssc.sparkContext.setLogLevel("FATAL")

必须根据应用程序的延迟要求和可用的群集资源设置批处理间隔。要使群集上运行的Spark Streaming应用程序保持稳定,系统应该能够以接收数据的速度处理数据。换句话说,批处理数据应该在生成时尽快处理。通过监视流式Web UI中的处理时间可以找到是否适用于应用程序,其中批处理时间应小于批处理间隔。

val conf = new SparkConf()
.setMaster("local[5]")
.setAppName("wordCount")
val sc = new SparkContext(conf)
val ssc = new StreamingContext(sc,Seconds(1))

当用户创建完StreamingContext对象之后,用户需要完成以下步骤

  • 定义数据源,用于创建输入的 DStreams.
  • 定义流计算算子,通过定义这些算子实现对DStream数据转换和输出
  • 调用streamingContext.start()启动数据.
  • 等待计算结束 (人工结束或者是错误) 调用streamingContext.awaitTermination().
  • 如果是人工结束,程序应当调用 streamingContext.stop()结束流计算.

重要因素需要谨记

  • 一旦流计算启动,无法再往计算流程中添加计算算子
  • 一旦SparkContext对象被stop后,无法重启。
  • 一个JVM系统中只能实例化一个StreamingContext对象。
  • SparkContext被stop()后,内部创建的SparkContext也会被stop.如果仅仅是想Stop StreamingContext, 可以设置stop() 中的可选参数 stopSparkContext=false即可.
ssc.stop(stopSparkContext = false)
  • 一个SparkContext 可以重复使用并且创建多个StreamingContexts, 前提是上一个启动的StreamingContext 被停止了(但是并没有关闭 SparkContext对象) 。

Discretized Streams (DStreams)

Discretized Stream或DStream是Spark Streaming提供的基本抽象。它表示连续的数据流,可以是从源接收的输入数据流,也可以是通过转换输入流生成的已处理数据流。在内部,DStream由一系列连续的RDD表示,这是Spark对不可变分布式数据集的抽象。DStream中的每个RDD都包含来自特定时间间隔的数据,如下图所示。
在这里插入图片描述
应用于DStream的任何操作都转换为底层RDD上的操作。例如,在先前Quick Start示例中,flatMap操作应用于行DStream中的每个RDD以生成单词DStream的RDD。如下图所示。
在这里插入图片描述
这些底层RDD转换由Spark引擎计算。 DStream操作隐藏了大部分细节,并为开发人员提供了更高级别的API以方便使用。

InputStream & Receivers

Input DStream 表示流计算的输入,Spark中默认提供了两类的InputStream:

  • Baisc Source :例如 filesystem、scoket
  • Advance Source:例如:Kafka、Flume等外围系统的数据。

filesystem以外,其他的Input DStream默认都会占用一个Core(计算资源),在测试或者生产环境下,分配给计算应用的Core数目必须大于Receivers个数。(本质上除filesystem源以外,其他的输入都是Receiver抽象类的实现。)了例如socketTextStream底层封装了SocketReceiver

Basic Sources

因为在快速入门案例中已经使用了socketTextStream,后续我们只测试一下filesystem对于从与HDFS API兼容的任何文件系统(即HDFS,S3,NFS等)上的文件读取数据,可以通过StreamingContext.fileStream [KeyClass,ValueClass,InputFormatClass]创建DStream。文件流不需要运行Receiver,因此不需要为接收文件数据分配任何core。对于简单的文本文件,最简单的方法是StreamingContext.textFileStream(dataDirectory)

 val conf = new SparkConf().setMaster("local[2]").setAppName("FileSystemWordCount")
    val ssc = new StreamingContext(conf, Seconds(5))
    ssc.sparkContext.setLogLevel("FATAL")//关闭日志打印

    val lines = ssc.textFileStream("hdfs://CentOS:9000/demo/words")

    lines.flatMap(_.split(" "))
      .map((_,1))
      .reduceByKey(_+_)
      .print()

    ssc.start()
    ssc.awaitTermination()

在HDFS上创建目录

[root@CentOS ~]# hdfs dfs -mkdir -p /demo/words
[root@CentOS ~]# hdfs dfs -put install.log /111/
[root@CentOS ~]# hdfs dfs -mv /111/install.log /demo/words

在这里插入图片描述

用队列作为数据源测试(Queue)

为了使用测试数据测试Spark Streaming应用程序,还可以使用streamingContext.queueStream(queueOfRDDs)基于RDD队列创建DStream。推入队列的每个RDD将被视为DStream中的一批数据,并像流一样处理。

val conf = new SparkConf().setMaster("local[2]").setAppName("FileSystemWordCount")
val ssc = new StreamingContext(conf, Seconds(1))
ssc.sparkContext.setLogLevel("FATAL")//关闭日志打印

val queue=new mutable.Queue[RDD[String]]();
val lines = ssc.queueStream(queue)

lines.flatMap(_.split(" "))
.map((_,1))
.reduceByKey(_+_)
.print()

ssc.start()
for(i <- 1 to 30){
    queue += ssc.sparkContext.makeRDD(List("this is a demo","hello how are you"))
    Thread.sleep(1000)
}
ssc.stop()

数据源来自于Kafka

  • pom依赖
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
    <version>2.4.3</version>
</dependency>
  • Spark Streaming消费kakfa的topic数据
val conf = new SparkConf().setMaster("local[2]").setAppName("FileSystemWordCount")
    val ssc = new StreamingContext(conf, Seconds(1))
    ssc.sparkContext.setLogLevel("FATAL")//关闭日志打印

    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> "CentOS:9092",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> "group1",
      "enable.auto.commit" -> (false: java.lang.Boolean)
    )

    KafkaUtils.createDirectStream(ssc,
      LocationStrategies.PreferConsistent,//设置加载数据位置策略,
      ConsumerStrategies.Subscribe[String,String](Array("topic01"),kafkaParams))
        .map(record => record.value())
        .flatMap(_.split(" "))
        .map((_,1))
        .reduceByKey(_+_)
        .print()

    ssc.start()
    ssc.awaitTermination()

注意:数据源(面试、开发重点)
ReceiverAPI:需要一个专门的Executor去接收数据,然后发送给其他的 Executor 做计算。存在的问题,接收数据的Executor和计算的Executor速度会有所不同,特别在接收数据的 Executor速度大于计算的Executor速度,会导致计算数据的节点内存溢出。早期版本中提供此方式,当前版本不适用

DirectAPI:是由计算的 Executor 来主动消费 Kafka 的数据,速度由自身控制。

Spark Stream 算子

这里只列举部分前面未提到的,已提到的就不再复述

transform(func)

transform允许DStream上执行任意的RDD-to-RDD函数。即使这些函数并没有在DStream 的API中暴露出来,通过该函数可以方便的扩展 Spark API。

 val conf = new SparkConf().setMaster("local[2]").setAppName("KafkaStreamWordCount")
      val ssc = new StreamingContext(conf, Seconds(1))
      val kafkaParams = Map[String, Object](
        "bootstrap.servers" -> "CentOS:9092",
        "key.deserializer" -> classOf[StringDeserializer],
        "value.deserializer" -> classOf[StringDeserializer],
        "group.id" -> "group1",
        "enable.auto.commit" -> (false: java.lang.Boolean)
      )
   
    val cacheRDD = ssc.sparkContext.makeRDD(List("001 zhangsan", "002 lisi", "003 zhaoliu"))
      .map(item => (item.split("\\s+")(0), item.split("\\s+")(1)))
      .distinct()
      .cache()


      //001 apple
      KafkaUtils.createDirectStream(ssc,
        LocationStrategies.PreferConsistent,
        ConsumerStrategies.Subscribe[String,String](Array("topic01"),kafkaParams))
        .map(record => record.value())
        .map(value=>{
          val tokens = value.split("\\s+")
          (tokens(0),tokens(1))
        })
       .transform(rdd=>{rdd.rightOuterJoin(cacheRDD)})	//右连接cacheRDD 
      .filter(t=> {t._2._1!=None})
        .print()

    ssc.sparkContext.setLogLevel("FATAL")//关闭日志打印
    ssc.start()
    ssc.awaitTermination()

UpdateStateByKey

updateStateByKey 需要对检查点目录进行配置,会使用检查点来保存状态。

val conf = new SparkConf().setMaster("local[2]").setAppName("KafkaStreamWordCount")
val ssc = new StreamingContext(conf, Seconds(1))
ssc.checkpoint("hdfs://CentOS:9000/checkpoints")//在JVM启动参数中添加-DHADOOP_USER_NAME=root
def updateFun(newValues: Seq[Int], runningCount: Option[Int]): Option[Int] = {
   var total= newValues.sum+runningCount.getOrElse(0)
   Some(total)
}
ssc.socketTextStream("CentOS",9999)
    .flatMap(_.split("\\s+"))
    .map((_,1))
    .updateStateByKey(updateFun)
    .print()

ssc.sparkContext.setLogLevel("FATAL")//关闭日志打印
ssc.start()
ssc.awaitTermination()

因为UpdateStateByKey 算子每一次的输出都是全量输出,在做状态更新的时候代价较高,因此推荐大家使用mapWithState

mapWithState

val conf = new SparkConf().setMaster("local[2]").setAppName("KafkaStreamWordCount")
val ssc = new StreamingContext(conf, Seconds(1))
ssc.checkpoint("hdfs://CentOS:9000/checkpoints")
def updateFun(newValues: Seq[Int], runningCount: Option[Int]): Option[Int] = {
    var total= newValues.sum+runningCount.getOrElse(0)
    Some(total)
}
ssc.socketTextStream("CentOS",9999)
.flatMap(_.split("\\s+"))
.map((_,1))
.mapWithState(StateSpec.function((k:String,v:Option[Int],state:State[Int])=>{
    var total=0
    if(state.exists()){
        total=state.getOption().getOrElse(0)
    }
    total += v.getOrElse(1)
    state.update(total)//跟新状态
    (k,total)
}))
.print()

ssc.sparkContext.setLogLevel("FATAL")//关闭日志打印
ssc.start()
ssc.awaitTermination()

故障中|重启中恢复状态

var checkpointPath="hdfs://CentOS:9000/checkpoints"//设置检查点目录,一般将检查点目录存储在HDFS上
var ssc=StreamingContext.getOrCreate(checkpointPath,()=>{//第一次启时候初始化,一旦书写完成后,无法进行修改!
    println("=======init=======")
    val conf = new SparkConf().setMaster("local[2]").setAppName("KafkaStreamWordCount")
    val ssc = new StreamingContext(conf, Seconds(5))
    ssc.checkpoint(checkpointPath)
    def updateFun(newValues: Seq[Int], runningCount: Option[Int]): Option[Int] = {
        var total= newValues.sum+runningCount.getOrElse(0)
        Some(total)
    }
    ssc.socketTextStream("CentOS",9999)
    .flatMap(_.split("\\s+"))
    .map((_,1))
    .mapWithState(StateSpec.function((k:String,v:Option[Int],state:State[Int])=>{
        var total=0
        if(state.exists()){
            total=state.getOption().getOrElse(0)
        }
        total += v.getOrElse(1)
        state.update(total)//跟新状态
        (k,total)
    }))
    .checkpoint(Seconds(5))//设置状态持久化的频率,改频率不能高于 微批 拆分频率 ts>=5s
    .print()
    ssc
})
ssc.sparkContext.setLogLevel("FATAL")//关闭日志打印
ssc.start()
ssc.awaitTermination()

窗口 - window

Spark Streaming还提供窗口计算,允许您在滑动数据窗口上应用转换。下图说明了此滑动窗口。
所有基于窗口的操作都需要两个参数,分别为窗口时长以及滑动步长。
在这里插入图片描述
以上描述了窗口长度是3个时间单位的微批,窗口的滑动步长是2个时间单位的微批,注意:Spark的流处理中要求窗口的长度以及滑动步长必须是微批的整数倍

val conf = new SparkConf().setMaster("local[2]").setAppName("KafkaStreamWordCount")
    val ssc = new StreamingContext(conf, Seconds(1))

    ssc.socketTextStream("CentOS",9999)
      .flatMap(_.split("\\s+"))
      .map((_,1))
      .reduceByKeyAndWindow((v1:Int,v2:Int)=> v1+v2,Seconds(5),Seconds(5))
      //或者是.window(Seconds(5),Seconds(5)).reduceByKey((v1:Int,v2:Int)=> v1+v2)
      //reduceByKeyAndWindow = window+reduceByKey
      .print()

    ssc.sparkContext.setLogLevel("FATAL")//关闭日志打印
    ssc.start()
    ssc.awaitTermination()

关于 Window 的操作还有如下方法:
(1)window(windowLength, slideInterval): 基于对源 DStream 窗化的批次进行计算返回一个新的 Dstream;
(2)countByWindow(windowLength, slideInterval): 返回一个滑动窗口计数流中的元素个数;
(3)reduceByWindow(func, windowLength, slideInterval): 通过使用自定义函数整合滑动区间流元素来创建一个新的单元素流;
(4)reduceByKeyAndWindow(func, windowLength, slideInterval, [numTasks]): 当在一个(K,V)键值对的 DStream 上调用此函数,会返回一个新(K,V)键值对的 DStream,此处通过对滑动窗口中批次数据使用 reduce 函数来整合每个 key 的 value 值。

DStream Output (输出)

foreachRDD(func)

通用的输出操作 foreachRDD(),它用来对 DStream 中的 RDD 运行任意计算。

val conf = new SparkConf().setMaster("local[2]").setAppName("KafkaStreamWordCount")
val ssc = new StreamingContext(conf, Seconds(1))

ssc.socketTextStream("CentOS",9999)
  .flatMap(_.split("\\s+"))
  .map((_,1))
//  .window(Seconds(5),Seconds(5))
  .reduceByKey((v1:Int,v2:Int)=> v1+v2)
  .foreachRDD(rdd=>{
    rdd.foreachPartition(items=>{
        var jedisPool=new JedisPool("CentOS",6379)
        val jedis = jedisPool.getResource
        val pipeline = jedis.pipelined()//jedis批处理

        val map = items.map(t=>(t._1,t._2+"")).toMap.asJava
        pipeline.hmset("wordcount",map)

         pipeline.sync()
        jedis.close()
    })
  })


ssc.sparkContext.setLogLevel("FATAL")//关闭日志打印
ssc.start()
ssc.awaitTermination()

sparkstreaming反压机制

因特殊业务场景,如大促、秒杀活动与突发热点事情等业务流量在短时间内剧增,形成巨大的流量毛刺,数据流入的速度远高于数据处理的速度,对流处理系统构成巨大的负载压力,如果不能正确处理,可能导致集群资源耗尽最终集群崩溃,因此有效的反压机制(backpressure)对保障流处理系统的稳定至关重要。

strom反压机制: 对于开启了acker机制的storm程序,可以通过设置conf.setMaxSpoutPending参数来实现反压效果,如果下游组件(bolt)处理速度跟不上导致spout发送的tuple没有及时处理的数超过了参数设定的值,spout会停止发送数据,这种方式的缺点是很难调优conf.setMaxSpoutPending参数的设置以达到最好的反压效果,设小了会导致吞吐上不去,设大了会导致worker OOM;有震荡,数据流会处于一个颠簸状态,效果不如逐级反压;另外对于关闭acker机制的程序无效;

新的storm自动反压机制(Automatic Back Pressure)通过监控bolt中的接收队列的情况,当超过高水位值时专门的线程会将反压信息写到 Zookeeper ,Zookeeper上的watch会通知该拓扑的所有Worker都进入反压状态,最后Spout降低tuple发送的速度。具体实现:JIRA STORM-886

Spark Streaming程序中当计算过程中出现batch processing time > batch interval的情况时,(其中batch processing time为实际计算一个批次花费时间,batch interval为Streaming应用设置的批处理间隔),意味着处理数据的速度小于接收数据的速度,如果这种情况持续过长的时间,会造成数据在内存中堆积,导致Receiver所在Executor内存溢出等问题(如果设置StorageLevel包含disk, 则内存存放不下的数据会溢写至disk, 加大延迟),可以通过设置参数spark.streaming.receiver.maxRate来限制Receiver的数据接收速率,此举虽然可以通过限制接收速率,来适配当前的处理能力,防止内存溢出,但也会引入其它问题。比如:producer数据生产高于maxRate,当前集群处理能力也高于maxRate,这就会造成资源利用率下降等问题。为了更好的协调数据接收速率与资源处理能力,Spark Streaming 从v1.5开始引入反压机制(back-pressure),通过动态控制数据接收速率来适配集群数据处理能力

Spark Streaming Backpressure: 根据JobScheduler反馈作业的执行信息来动态调整Receiver数据接收率。通过属性"spark.streaming.backpressure.enabled"来控制是否启用backpressure机制,默认值false,即不启用
参考:https://www.cnblogs.com/barrenlake/p/5349949.html SpartStreaming反压机制

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值