C++数据结构与算法分析——01背包问题

21 篇文章 0 订阅
1 篇文章 0 订阅

01背包问题

介绍

01背包问题其实在我之前的博客中略有提及。01背包的问题描述大致如下:
N件物品和一个容量是V的背包。每件物品只能使用一次
i件物品的体积是 v i v_i vi,价值是 w i w_i wi
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大
这是经典的动态规划问题,也是动态规划的入门背包问题。

DP解法

此前已经写过遗传算法解01背包问题,这次使用DP解法来求解01背包问题。
在DP问题中最重要的是求状态转移方程,即如何将当前状态表示出来。此时我们可以尝试使用闫氏DP分析法

  1. 将DP问题划分为两步:状态表示状态计算
  2. 状态表示中又分为两部分:状态表示的集合是什么,以及状态表示的属性是什么。
  3. 状态计算则是求解状态转移方程的步骤

以01背包问题为例:
状态用f[i][j]来表示。

  • 状态表示
    • 状态表示的集合:从前i个物品中选,且总体积不超过j的选法方案。
    • 状态表示的属性Max(价值最大)
  • 状态计算
    • f[i][j]可分为两部分考虑:
      1. 不选第i件物品
        此时从前i件物品中选且总体积不超过j的选法方案 = 从前i - 1件物品中选且总体积不超过j的选法方案
        f[i][j] = f[i - 1][j]
      2. 选第i件物品
        由于第i件物品的体积为v[i]
        此时从前i件物品中选且总体积不超过j的选法方案 = 从前i - 1件物品中选且总体积不超过j - v[i]的选法方案 + 第i件物品的价值
        f[i][j] = f[i - 1][j - v[i]] + w[i]

01背包

由于f[i][j]属性为Max,因此需要从两种状态中取最大值,因此它的状态转移方程为
f [ i ] [ j ] = m a x ( f [ i − 1 ] [ j ] , f [ i − 1 ] [ j − v [ i ] ] + w [ i ] ) f[i][j] = max(f[i - 1][j],f[i - 1][j - v[i]] + w[i]) f[i][j]=max(f[i1][j],f[i1][jv[i]]+w[i])

例题

题目描述

N件物品和一个容量是V的背包。每件物品只能使用一次

i件物品的体积是 v i v_i vi,价值是 w i w_i wi

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大
输出最大价值

输入格式

第一行两个整数,NV,用空格隔开,分别表示物品数量和背包容积。

接下来有N行,每行两个整数 v i v_i vi, w i w_i wi,用空格隔开,分别表示第i件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0 < N , V ≤ 1000 0<N,V≤1000 0<N,V1000
0 < v i , w i ≤ 1000 0<v_i,w_i≤1000 0<vi,wi1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

8

解题思路

最主要是求出状态转移方程。

代码

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int f[N][N],w[N],v[N];
int n,m;

int main()
{
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
    
    for (int i = 1; i <= n; i ++ ){ // 枚举第1 ~ 第n个物品
        for (int j = 1; j <= m; j ++ ){ // 枚举第1 ~ 第m 个体积
            f[i][j] = f[i - 1][j];
            if(j >= v[i])
                f[i][j] = max(f[i][j],f[i - 1][j - v[i]] + w[i]); // 状态转移方程
        }
    }
    
    cout << f[n][m]; // 输出从前n个物品中选且总体积不大于m的最大价值
    
    return 0;
}

代码的一维优化

  1. for(int j = 1; j <= m; j ++)循环内,只有j >= v[i]时才有操作,因此可以直接优化为
    for(int j = v[i]; j <= m; j ++),可以省去判断。
  2. 观察代码可以发现,状态转移方程只用到了f[i - 1]f[i]两个状态,即第i 个物品只与第i - 1个物品有关,因此我们可以将这一维优化掉,因为第i个物品中f[i][j] = f[i - 1][j]等价于f[j] = f[j].
    f[i] = max(f[i - 1][j],f[i - 1][j - v[i]] + w[i])也等价于f[j] = max(f[j],f[j - v[i]] + w[i]),因为在第i次循环到j之前,f[j]都还是f[i - 1][j],循环到j之后,f[j] = f[i][j]
    注意:如果j还是从v[i]循环到m,那么当到第i个物品时,f[j - v[i]]将并不是f[i - 1][j - v[i]],而是f[i][j - v[i]],因为j由小到大更新会先将f[i - 1][j - v[i]]更新才更新f[i - 1][j],因此我们需要对j进行从大到小循环。
  3. v[i]w[i]只在当前循环中用得上,我们可以只用v,w来代替v[i],w[i],优化空间复杂度。

优化后的代码

#include<iostream>
#include<algorithm>
using namespace std;

const int N = 1010;
int f[N];
int n,m;

int main(){
    cin >> n >> m;
    
    for(int i = 1; i <= n; i ++){
        int v,w;
        cin >> v >> w;
        for(int j = m; j >= v; j --)
            f[j] = max(f[j],f[j - v] + w);
    }
    
    cout << f[m];
    
    return 0;
}
  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

L_Hygen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值