证明一个公式,X是一个非负的随机变量,则 E[X]=∫+∞0(1−F(t))dt
其中E[X] 是随机变量X的期望,F(x)=P{
X<=x}是随机变量的分布函数。
下面证明方法一应该是正确的。证明方法二,由于学习功力不够,未能保证每一步都是严谨的,如果有误,烦请指正。
证法一:
当X是离散随机变量时,
∫+∞0(1−F(t))dt
=∑+∞t=0P(X>t)
=∑+∞t=0∑+∞x=t+1P(X=x)
=
证明一个公式,X是一个非负的随机变量,则 E[X]=∫+∞0(1−F(t))dt
其中E[X] 是随机变量X的期望,F(x)=P{
X<=x}是随机变量的分布函数。
下面证明方法一应该是正确的。证明方法二,由于学习功力不够,未能保证每一步都是严谨的,如果有误,烦请指正。
证法一:
当X是离散随机变量时,
∫+∞0(1−F(t))dt
=∑+∞t=0P(X>t)
=∑+∞t=0∑+∞x=t+1P(X=x)
=