自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 Python实现PDF字符分割

https://github.com/tianzhi0549/CTPN https://github.com/meijieru/crnn.pytorch周末加班啥也没干,编译了下这两个代码,看一下paper,大概效果论文中都有。 这边我选个一个PDF论文中一段,进行分割和翻译。如下图。分割效果如下:调试了几个参数,发现不太能够一个单词一个单词这样分割,将上图直接输入给CRNN是无法识别出其中的单

2017-07-07 14:20:59 1767

转载 Tensorflow学习资料小结

转载的tensorflow学习资料,感谢总结! 第一步:给TF新手的教程指南 原文 1:tf初学者需要明白的入门准备 机器学习入门笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisite/ml_introduction.ipynb MNIST 数据集入门笔记

2017-07-07 14:09:49 410

转载 SSD目标检测

SSD目标检测SSD是继yolo又一神作,对其理论这边就不介绍了,给上链接: http://blog.csdn.net/u011534057/article/details/52733686这边只讲代码编译,最近想试一下SSD的速度,看看在CPU端每秒能够检测几张图。原本一直编译C++(CAFFE)版本的,但是C++小白遇到很多问题,在同事的帮助下还是未能解决。后就选择编译TF的SSD,https

2017-07-07 14:01:21 2428

转载 RCNN系类

RCNN → Fast RCNN → Faster RCNN 最近在浏览网页时看到RFCN,突然发现有一些知识点是之前学习时没有发现的,于是对RCNN系列进行了复习。 RCNN系列的博客已经很多很多了,这边就不再多说。这篇博客主要是对一些讲解RCNN系列网络较好的博客进行了总结。 RCNN: 1、http://blog.csdn.net/shenxiaolu1984/article/deta

2017-07-07 13:57:06 371

转载 李航统计学习方法-朴素贝叶斯法

今天看李航统计学习第四章–朴素贝叶斯,发现好多概率统计的概念都记不得了,于是只能找度娘,在找度娘的过程中,发现了一个很不错的博客: http://www.cnblogs.com/pinard/p/6069267.html 讲解的朴素贝叶斯算法通俗易懂。 如果不同全概率公式,可以百度一下,一看就懂。原本还比较懵懂的,看了这个瞬间懂了很多。配合李航书中的题目,对朴素贝叶斯能有更好的了解: (

2017-07-07 13:54:06 977

转载 李航统计学习方法-K邻近法

k邻近简单的理解一下就是,给定一部分带标签样本和一个未知标签样本,将未知标签样本和带标签样本一一比较求距离,然后根据最近k个样本来决定未知标签样本的类别。 如上图:确定圆圈的类别,如K=3,则为三角;若K=5,则为正方形。那么怎么求距离?选择何种求距离算法。 书中给出了Lp距离的求解: 除了距离度量外,K邻近法的K值如何选取也很重要,书中介绍如下: K值较小,模型较复杂,易过

2017-07-07 13:45:34 440

转载 李航统计学习方法--感知机

感知机的思想很简单:根据输入数据寻找一个超平面来将数据分开。感知机是神经网络和支持向量机的基础(如果知道神经网络或支持向量机,很容易看出)。感知机处理的数据集必须是线性可分得,神经网络和支持向量机在一些机制下就可以处理复杂的数据。不讲理论了,直接看书: 这边简单介绍了一下超平面。下面主要将如何表示感知机的误差(如果不懂点到平面距离自行百度),文中涉及的公式推到都比较简单,耐性看一下就可以理解下面就

2017-07-07 13:35:07 477

转载 李航统计学习方法:第一章

本系列主要涉及李航统计学习方法一书、各大牛博客和简单实例,前面主要理论讲解,大多是书本知识;由于数学基础知识忘得比较快,可能好多讲得不准确的地方,望各位指出;若文中有涉及各位版权的,请指出,本人会及时处理。第一章将的是一些理论上的东西,没有算法,没有太多公式推导: 主要涉及: 1、什么是监督学习(例如:带有标签的分类问题)。对应着就是无监督学习,半监督学习等。 2、统计学习三要素:模型、策略和

2017-07-07 13:21:31 450

转载 TFRecord格式数据和类似cifar的bin格式文件

主要参考链接: 1、TFrecord: https://github.com/kevin28520/My-TensorFlow-tutorials 2、Bin文件制作:http://blog.csdn.net/YhL_Leo/article/details/50801226(c++语言的) (代码有部分需要简单修改,我是一个c++小白,在这要感谢同时郭**的帮忙,另外python的制作

2017-05-25 14:22:50 1076 2

转载 YOLO(You Only Look Once)--只需瞄一眼

本文主要参考:http://blog.csdn.net/u011534057/article/details/51244354 https://zhuanlan.zhihu.com/p/25045711?refer=shanren7 https://pjreddie.com/darknet/yolo/实习期间,想实现行人检测任务,要求速度上

2017-05-15 11:21:14 2629 1

转载 数据增强(2)

数据增强(2) 上篇博客数据增强(1)中已经提到的一些方法,这篇是学习海康威视研究院2016ImageNet竞赛经验分享中的数据增强方式。 主要参考:https://zhuanlan.zhihu.com/p/23249000 http://www.cnblogs.com/arthurpro/p/6008609.html 数据增强对最后的

2017-05-11 17:38:47 4367

转载 Tensorflow数据读取方式

Tensorflow数据读取方式 关于tensorflow(简称TF)数据读取方式,官方给出了三种: 供给数据(Feeding):在TF程序运行的每一步,让python代码来供给数据。 从文件读取数据:在TF图的起始,让每一个管线从文件中读取数据。 预加载数据 :在TF图中定义常量或者变量来保存数据(使用数据量较小的情况)。 的 一、供给数据 TF的数据供给机制允

2017-05-11 16:25:14 558

转载 CNN数据增强(1)

数据增强(Data Augmentation)  深度学习通常需要大量的数据作为支撑,看到那些公开的数据集,少的也有几十万张,但是在现实中,我们能拥有的数据集网络没有那么到。但是数据量少,往往会造成过拟合等问题,因此需要一些“奇巧淫技”来增强数据,正好本人在看斯坦福的CS231N课程中的这方面介绍,因此做个总结。结合课程和网上查看的资料,将Data Augmentation总结如下:1

2017-05-10 11:28:43 18405 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除