Aloe_vera_Al
码龄8年
关注
提问 私信
  • 博客:34,356
    34,356
    总访问量
  • 1
    原创
  • 2,005,327
    排名
  • 9
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2016-06-03
博客简介:

l_xyy的博客

查看详细资料
个人成就
  • 获得6次点赞
  • 内容获得4次评论
  • 获得14次收藏
创作历程
  • 13篇
    2017年
TA的专栏
  • CNN
    2篇
  • tensorflow
    3篇
  • 目标检测
    3篇
  • 机器学习
    4篇
  • python
    1篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Python实现PDF字符分割

https://github.com/tianzhi0549/CTPN https://github.com/meijieru/crnn.pytorch周末加班啥也没干,编译了下这两个代码,看一下paper,大概效果论文中都有。 这边我选个一个PDF论文中一段,进行分割和翻译。如下图。分割效果如下:调试了几个参数,发现不太能够一个单词一个单词这样分割,将上图直接输入给CRNN是无法识别出其中的单
原创
发布博客 2017.07.07 ·
1767 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

Tensorflow学习资料小结

转载的tensorflow学习资料,感谢总结! 第一步:给TF新手的教程指南 原文 1:tf初学者需要明白的入门准备 机器学习入门笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisite/ml_introduction.ipynb MNIST 数据集入门笔记
转载
发布博客 2017.07.07 ·
410 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

SSD目标检测

SSD目标检测SSD是继yolo又一神作,对其理论这边就不介绍了,给上链接: http://blog.csdn.net/u011534057/article/details/52733686这边只讲代码编译,最近想试一下SSD的速度,看看在CPU端每秒能够检测几张图。原本一直编译C++(CAFFE)版本的,但是C++小白遇到很多问题,在同事的帮助下还是未能解决。后就选择编译TF的SSD,https
转载
发布博客 2017.07.07 ·
2428 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

RCNN系类

RCNN → Fast RCNN → Faster RCNN 最近在浏览网页时看到RFCN,突然发现有一些知识点是之前学习时没有发现的,于是对RCNN系列进行了复习。 RCNN系列的博客已经很多很多了,这边就不再多说。这篇博客主要是对一些讲解RCNN系列网络较好的博客进行了总结。 RCNN: 1、http://blog.csdn.net/shenxiaolu1984/article/deta
转载
发布博客 2017.07.07 ·
371 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

李航统计学习方法-朴素贝叶斯法

今天看李航统计学习第四章–朴素贝叶斯,发现好多概率统计的概念都记不得了,于是只能找度娘,在找度娘的过程中,发现了一个很不错的博客: http://www.cnblogs.com/pinard/p/6069267.html 讲解的朴素贝叶斯算法通俗易懂。 如果不同全概率公式,可以百度一下,一看就懂。原本还比较懵懂的,看了这个瞬间懂了很多。配合李航书中的题目,对朴素贝叶斯能有更好的了解: (
转载
发布博客 2017.07.07 ·
977 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

李航统计学习方法-K邻近法

k邻近简单的理解一下就是,给定一部分带标签样本和一个未知标签样本,将未知标签样本和带标签样本一一比较求距离,然后根据最近k个样本来决定未知标签样本的类别。 如上图:确定圆圈的类别,如K=3,则为三角;若K=5,则为正方形。那么怎么求距离?选择何种求距离算法。 书中给出了Lp距离的求解: 除了距离度量外,K邻近法的K值如何选取也很重要,书中介绍如下: K值较小,模型较复杂,易过
转载
发布博客 2017.07.07 ·
440 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

李航统计学习方法--感知机

感知机的思想很简单:根据输入数据寻找一个超平面来将数据分开。感知机是神经网络和支持向量机的基础(如果知道神经网络或支持向量机,很容易看出)。感知机处理的数据集必须是线性可分得,神经网络和支持向量机在一些机制下就可以处理复杂的数据。不讲理论了,直接看书: 这边简单介绍了一下超平面。下面主要将如何表示感知机的误差(如果不懂点到平面距离自行百度),文中涉及的公式推到都比较简单,耐性看一下就可以理解下面就
转载
发布博客 2017.07.07 ·
477 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

李航统计学习方法:第一章

本系列主要涉及李航统计学习方法一书、各大牛博客和简单实例,前面主要理论讲解,大多是书本知识;由于数学基础知识忘得比较快,可能好多讲得不准确的地方,望各位指出;若文中有涉及各位版权的,请指出,本人会及时处理。第一章将的是一些理论上的东西,没有算法,没有太多公式推导: 主要涉及: 1、什么是监督学习(例如:带有标签的分类问题)。对应着就是无监督学习,半监督学习等。 2、统计学习三要素:模型、策略和
转载
发布博客 2017.07.07 ·
450 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

TFRecord格式数据和类似cifar的bin格式文件

主要参考链接: 1、TFrecord: https://github.com/kevin28520/My-TensorFlow-tutorials 2、Bin文件制作:http://blog.csdn.net/YhL_Leo/article/details/50801226(c++语言的) (代码有部分需要简单修改,我是一个c++小白,在这要感谢同时郭**的帮忙,另外python的制作
转载
发布博客 2017.05.25 ·
1076 阅读 ·
0 点赞 ·
2 评论 ·
1 收藏

YOLO(You Only Look Once)--只需瞄一眼

本文主要参考:http://blog.csdn.net/u011534057/article/details/51244354 https://zhuanlan.zhihu.com/p/25045711?refer=shanren7 https://pjreddie.com/darknet/yolo/实习期间,想实现行人检测任务,要求速度上
转载
发布博客 2017.05.15 ·
2630 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

数据增强(2)

数据增强(2) 上篇博客数据增强(1)中已经提到的一些方法,这篇是学习海康威视研究院2016ImageNet竞赛经验分享中的数据增强方式。 主要参考:https://zhuanlan.zhihu.com/p/23249000 http://www.cnblogs.com/arthurpro/p/6008609.html 数据增强对最后的
转载
发布博客 2017.05.11 ·
4367 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

Tensorflow数据读取方式

Tensorflow数据读取方式 关于tensorflow(简称TF)数据读取方式,官方给出了三种: 供给数据(Feeding):在TF程序运行的每一步,让python代码来供给数据。 从文件读取数据:在TF图的起始,让每一个管线从文件中读取数据。 预加载数据 :在TF图中定义常量或者变量来保存数据(使用数据量较小的情况)。 的 一、供给数据 TF的数据供给机制允
转载
发布博客 2017.05.11 ·
558 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

CNN数据增强(1)

数据增强(Data Augmentation)  深度学习通常需要大量的数据作为支撑,看到那些公开的数据集,少的也有几十万张,但是在现实中,我们能拥有的数据集网络没有那么到。但是数据量少,往往会造成过拟合等问题,因此需要一些“奇巧淫技”来增强数据,正好本人在看斯坦福的CS231N课程中的这方面介绍,因此做个总结。结合课程和网上查看的资料,将Data Augmentation总结如下:1
转载
发布博客 2017.05.10 ·
18406 阅读 ·
4 点赞 ·
1 评论 ·
25 收藏