树状数组
下文a表示原数组,c表示树状数组
树状数组功能:
1.给某个位置上的数加上一个数
2.快速的求前缀和
c[x]层数的确定:
看x的二进制表示末尾有几个0,有几个0就是第几层
c[x]含义表示:
lowbit(x) = 2^k (k 是x二进制表示末尾0的个数)
c[x] 表示在A数组中一段区间的和 :c[x] = ( x - 2^k, x] = ( x - lowbit(x), x]
1.给某个位置上的数加上一个数
// 当前点是x,父节点是x + lowbit(x),若给x加上v,父节点都要同时加上v
a[x] += v;
for (int i = x; i <= n; i += lowbit(i)) c[i] += v;
2.快速的求前缀和
int res = 0;
for (int i = x; i > 0; i -= lowbit(i)) res += c[i];
例题:动态求连续区间和
给定 n 个数组成的一个数列,规定有两种操作,一是修改某个元素,二是求子数列 [a,b] 的连续和。
输入格式
第一行包含两个整数 n 和 m,分别表示数的个数和操作次数。
第二行包含 n 个整数,表示完整数列。
接下来 m 行,每行包含三个整数 k, a, b (k=0,表示求子数列[a,b] 的和;k=1,表示第 a 个数加 b)。
数列从 1 开始计数。
输出格式
输出若干行数字,表示 k=0 时,对应的子数列 [a,b] 的连续和。
数据范围
1 ≤ n ≤ 100000,
1 ≤ m ≤ 100000,
1 ≤ a ≤ b ≤ n,
数据保证在任何时候,数列中所有元素之和均在 int 范围内。
输入样例:
10 5
1 2 3 4 5 6 7 8 9 10
1 1 5
0 1 3
0 4 8
1 7 5
0 4 8
输出样例:
11
30
35
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010;
int a[N], c[N];
int n, m;
int lowbit(int x)
{
return x & -x;
}
// 在x的位置上加上v
void add(int x, int v)
{
for (int i = x; i <= n; i += lowbit(i)) c[i] += v;
}
// 查询1 - x位置的和
int query(int x)
{
int res = 0;
for (int i = x; i > 0; i -= lowbit(i)) res += c[i];
return res;
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++) scanf("%d", &a[i]);
for (int i = 1; i <= n; i ++) add(i, a[i]);
while (m --)
{
int k, x, y;
scanf("%d%d%d", &k, &x, &y);
if (k == 0) printf("%d\n", query(y) - query(x - 1));
else add(x, y);
}
return 0;
}