【树状数组】浅析

树状数组

下文a表示原数组,c表示树状数组
树状数组功能:

1.给某个位置上的数加上一个数  
2.快速的求前缀和

c[x]层数的确定:

看x的二进制表示末尾有几个0,有几个0就是第几层

c[x]含义表示:

lowbit(x) = 2^k (k 是x二进制表示末尾0的个数)
c[x] 表示在A数组中一段区间的和 :c[x] =  ( x - 2^k, x] = ( x - lowbit(x), x]

在这里插入图片描述
1.给某个位置上的数加上一个数

// 当前点是x,父节点是x + lowbit(x),若给x加上v,父节点都要同时加上v
a[x] += v;
for (int i = x; i <= n; i += lowbit(i)) c[i] += v;

2.快速的求前缀和

int res = 0;
for (int i = x; i > 0; i -= lowbit(i)) res += c[i];

例题:动态求连续区间和

给定 n 个数组成的一个数列,规定有两种操作,一是修改某个元素,二是求子数列 [a,b] 的连续和。

输入格式

第一行包含两个整数 n 和 m,分别表示数的个数和操作次数。

第二行包含 n 个整数,表示完整数列。

接下来 m 行,每行包含三个整数 k, a, b (k=0,表示求子数列[a,b] 的和;k=1,表示第 a 个数加 b)。

数列从 1 开始计数。

输出格式

输出若干行数字,表示 k=0 时,对应的子数列 [a,b] 的连续和。

数据范围

1 ≤ n ≤ 100000,
1 ≤ m ≤ 100000,
1 ≤ a ≤ b ≤ n,
数据保证在任何时候,数列中所有元素之和均在 int 范围内。

输入样例:

10 5
1 2 3 4 5 6 7 8 9 10
1 1 5
0 1 3
0 4 8
1 7 5
0 4 8

输出样例:

11
30
35
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010;
int a[N], c[N];
int n, m;
int lowbit(int x)
{
    return x & -x;
}
// 在x的位置上加上v
void add(int x, int v)
{
    for (int i = x; i <= n; i += lowbit(i)) c[i] += v;
}
// 查询1 - x位置的和
int query(int x)
{
    int res = 0;
	for (int i = x; i > 0; i -= lowbit(i)) res += c[i];
    return res;
}

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i ++) scanf("%d", &a[i]);
    for (int i = 1; i <= n; i ++) add(i, a[i]);
    while (m --)
    {
        int k, x, y;
        scanf("%d%d%d", &k, &x, &y);
        if (k == 0) printf("%d\n", query(y) - query(x - 1));
        else add(x, y);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值