HudsonLiu
码龄12年
关注
提问 私信
  • 博客:84,051
    社区:33
    84,084
    总访问量
  • 28
    原创
  • 1,483,288
    排名
  • 18
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2013-01-19
博客简介:

Hudson的博客

博客描述:
NLP相关方向论文分享、题解、代码笔记等
查看详细资料
个人成就
  • 获得15次点赞
  • 内容获得18次评论
  • 获得41次收藏
创作历程
  • 2篇
    2020年
  • 2篇
    2019年
  • 6篇
    2018年
  • 1篇
    2017年
  • 18篇
    2015年
成就勋章
TA的专栏
  • NLP
    5篇
  • Misc
    2篇
  • 题解
    17篇
  • Code
    2篇
  • Dev
    2篇
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

py2 & py3兼容性代码

from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionfrom __future__ import unicode_literalsimport sysif sys.version_info[0] < 3: reload(sys) sys.setdefaultencoding('utf-8')编码问题from _
原创
发布博客 2020.05.19 ·
328 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

NLP算法-面试知识点总结

前言推荐参考书籍如下:推荐使用Typora打开,阅读效果更好《统计学习方法(第2版)》- 李航《Deep Learning》- Ian Goodfellow等《机器学习》- 周志华《百面机器学习》- 诸葛越等项目地址:https://github.com/laddie132/NLP-Interview博客:https://laddie132.github.io/2020/0...
原创
发布博客 2020.04.26 ·
388 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

ADB控制安卓WIFI连接(斐讯R1联网指南)

许多情况下,我们所调试的安卓设备并没有屏幕显示,或者阉割掉了系统设置模块,比如斐讯R1智能音箱。这时候,使用adb的wifi控制就显得尤为重要,基于在Github的adb-join-wifi项目,我们增加了802.1x的PEAP加密协议支持,并且引入了静态ip地址,以及删除网络配置等功能,修改后的项目地址为https://github.com/laddie132/adb-join-wifi使用...
原创
发布博客 2019.04.16 ·
49188 阅读 ·
4 点赞 ·
14 评论 ·
18 收藏

谷歌云平台免费搭建个人博客

目录谷歌云平台免费搭建个人博客方法一:虚拟机服务方法二:App EngineStep1:创建Cloud SQLStep2:创建WordPress项目Step3:部署至App Engine注意事项参考谷歌云平台免费搭建个人博客谷歌云平台(Google Cloud Platform,GCP)的$300体验政策对开发者真的是十分友好,网上有各种各样的无限试用教程,大家可以参考。基于此,本文介绍下如何...
原创
发布博客 2019.04.04 ·
7567 阅读 ·
1 点赞 ·
3 评论 ·
5 收藏

论文分享 - Reinforced Mnemonic Reader for Machine Comprehension

简介这篇论文发表时间比较近,比较全面地总结了match-LSTM、R-Net等众多前人模型的优缺点,并做了很好的改进,如:增加编码层能力,解决长距离上下文信息,提炼预测答案片段,直接优化评价函数等,在SQuAD数据库上取得了State-Of-Art的效果。前人的很多模型都具有一个共同的网络框架,即“encoder-interaction-pointer”。首先是将问题和段落的单词序列利用R
原创
发布博客 2018.01.25 ·
2034 阅读 ·
2 点赞 ·
1 评论 ·
9 收藏

论文分享 - R-Net: Machine Reading Comprehension with Self-Matching

介绍该文由MSRA发表,在SQuAD数据库上目前成绩最好。模型借鉴了Wang&Jiang最早的match-LSTM方法,做了一些改进,网络结构分为以下四部分:RNN网络分别对question和passage单独编码基于门限的注意力循环神经网络(gated-attention based recurrent network)匹配question和passage,获取问题的相关段落表示(q
原创
发布博客 2018.01.25 ·
3275 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

论文分享 - Machine Comprehension Using Match-LSTM and Answer Pointer

介绍在Machine Comprehension(MC)任务中,早期数据库规模小,主要使用pipeline的方法;后来随着深度学习的发展,2016年,一个比较大规模的数据库出现了,即SQuAD。该文是第一个在SQuAD数据库上测试的端到端神经网络模型。主要结构包括两部分:Match-LSTM和Pointer-Net,并针对Pointer-Net设计了两种使用方法,序列模型(Sequence M
原创
发布博客 2018.01.25 ·
4507 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

python中logging模块使用

在java中,我们常常使用log4j模块来集中处理日志,同样,在python中,有logging模块担任这一功能。级别在logging中,日志分为以下几个等级(从低到高):debuginfowarningerrorcritical最高等级是严重错误,最低等级就是调试信息了。在代码中可以直接进行不同level的调用,只不过需要在初始化程序的时候,控制logging模块需要
原创
发布博客 2018.01.25 ·
265 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

pytorch使用笔记

使用pytorch时,有一些值得注意的地方,记录如下:tensor和variabletensor表示张量:一般情况下,一维tensor叫向量,二维tensor叫矩阵,多维tensor叫张量variable表示变量:实际上,是一个tensor的高级封装,同时包含了梯度值,且同一个变量的梯度值是累计更新的,需要手动清零。默认设置requires_grad=Falseparameter表示...
原创
发布博客 2018.01.25 ·
1490 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

论文分享 - Show and Tell: A Neural Image Caption Generator

介绍Image Caption是计算机视觉和自然语言处理相结合的一个任务,作者提出了一种基于神经网络的方法,将用于物体识别的cnn网络和用于机器翻译的lstm网络拼接起来,通过极大化正确描述的似然函数来训练这个网络。发表论文时,pascal数据集上bleu-1得分最高是25分,作者的模型可以到59分,人类水平大约是69分。该文主要是由于当时机器翻译模型的一些突破性进展,使用rnn模型的
翻译
发布博客 2018.01.25 ·
1238 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

Spark程序主函数extends App与main

Spark程序主函数注意在scala程序中,主函数有两种启动方式:object Test extends App { //ToDo}object Test{ def main(args: Array[String]): Unit = { //ToDo }}其中第一种方法在Spark中不被兼容,可能会出现空指针异常,如下代码:object Test extends App{
原创
发布博客 2017.12.04 ·
3973 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

uva 12657 移动盒子

这道题目采用双向链表数据结构,用left[i]和right[i]分别表示编号为i的盒子左边和右边的盒子编号,对于不同指令变换为对left和right数组的操作。最后遍历一个数组即可。题目中细节操作较多,需要细心检查。。。#include#include#includeusing namespace std;#define MAXL 100010int right[MAXL],
原创
发布博客 2015.09.08 ·
538 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

UVA - 11988 Broken Keyboard (a.k.a. Beiju Text)

这道题目在算法竞赛入门经典中是作为链表题目来做的,其实解法还有很多,这里列出我的思路:把一串字符分成一个一个的单词,再把单词压入双端队列中,最后按顺序输出即可。#include#include#include#include#include#includeusing namespace std;deque d;void Insert(int sta,string& s)
原创
发布博客 2015.09.07 ·
287 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

UVA-230 图书管理系统

这道题目是考察stl模板库中map的使用,使用map类型保存每本图书的状态,根据不同输入指令实现状态变换即可。另外需要注意的就是对于各种字符串的处理,需要灵活使用各种string类函数。#include#include#include#include#include#includeusing namespace std;#define LEN 90#define MAXL
原创
发布博客 2015.09.06 ·
517 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

uva 11572 Unique Snowflakes

题目要求找到一个尽量长的连续序列,使得该序列中没有相同的元素。采用滚动窗口的方法解决非常方便。从左到右首先尽量延长right,right无法延长时再继续把left向右移动一个,然后重复以上过程,每次再取ans最大值即可。另外再判断重复时可采用数据结构,利用set集合十分方便。#include#include#include#include#include#includeusin
原创
发布博客 2015.08.20 ·
382 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

UVA 11054 Gergovia的酒交易

题目要求计算满足所有村庄供需所需要的最少劳动力。利用等价交换的算法设计方法将问题范围依次缩小,从而达到目的。(注意采用long long类型)#include#include#include#include#include#includeusing namespace std;#define maxn 100005int a[maxn];int main(){//
原创
发布博客 2015.08.20 ·
382 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

UVA -156 Ananagrams(反片语)

题目写的是找出,不能通过字母重排得到输入文本中其他单词的单词,并按字典序输出。 解决方法还是比较巧妙的,利用了c++中STL库的map数据结构来简化代码。具体如下:首先标准化每个输入的单词(即全部化为小写且字母按字典序排列),然后无重复存入map#include#include#include#include#include#include#includeusing names
原创
发布博客 2015.08.05 ·
598 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

uva 673 平衡的括号

这道题目要求判断括号是否平衡。由于是判断就很简单了,利用stl里面的stack栈,遇到‘(’或者‘[’就入栈,遇到']'或')'就比较出栈。(注意下可能输入空字符)  #include #include #include #include #include #include #define maxn 200using namespace std;int main(){
原创
发布博客 2015.06.07 ·
426 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

uva 10305 给任务排序

这是刘汝佳算法入门上的一道拓扑排序题目。拿来练练手,题目采用dfs对有向无环图进行排序。每找到一个数,人如果有比它大的就继续dfs递归,直到最大的数,然后开始逆序存储到topo数组里面。(特别注意题目有坑,m可以为0 呀!)   #include #include #include #include #define maxn 10000using namespace std;
原创
发布博客 2015.06.07 ·
440 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

uva 1626 括号序列

这道题目是刘汝佳算法入门中的一道动态规划题目。要求添加最少括号得到一个规则序列。先来看看它的状态转移,稍有复杂。  如果S是形如(S`)或[S`]的,就转移到d(S`)。  如果至少有两个字符,那么S可以分为A和B,转移到d(A)+d(B)。边界条件就是S为空是d(S)为0,S位单字符时d(S)=1。另外需要注意的就是不管S是否进行第一种转移,都要尝试第二种转移。 #inc
原创
发布博客 2015.06.07 ·
456 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多