论文分享 - Machine Comprehension Using Match-LSTM and Answer Pointer

介绍

在Machine Comprehension(MC)任务中,早期数据库规模小,主要使用pipeline的方法;后来随着深度学习的发展,2016年,一个比较大规模的数据库出现了,即SQuAD。该文是第一个在SQuAD数据库上测试的端到端神经网络模型。主要结构包括两部分:Match-LSTM和Pointer-Net,并针对Pointer-Net设计了两种使用方法,序列模型(Sequence Model)和边界模型(Boundary Model)。最终训练效果好于原数据库发布时附带的手动抽取特征+LR模型。

  1. Match-LSTM是作者早些时候在文本蕴含(textual entertainment)任务中提出的,可参考《Learning natural language inference with LSTM》
  2. PyTorch实现:https://github.com/laddie132/Match-LSTM

模型

  • 序列模型:使用Ptr-Net网络,不做连续性假设,预测答案存在与原文的每一个位置
  • 边界模型:直接使用Ptr-Net网络预测答案在原文中起始和结束位置

这两种模型都分为三部分:

  1. LSTM预处理层:编码原文以及上下文信息
  2. match-LSTM层:匹配原文和问题
  3. Ans-Ptr层:从原文中选取答案

LSTM预处理层

直接使用单向LSTM,故而每一个时刻的隐含层向量输出只包含左侧上下文信息

H p = L S T M → ( P ) H q = L S T M → ( Q ) H^{p}=\overrightarrow{LSTM}(P) \quad H^{q}=\overrightarrow{LSTM}(Q) Hp=LSTM (P)Hq=LSTM (Q)

match-LSTM层

在文本蕴含任务中,输入一个文本对,假设句T和蕴含句H,这里将question当做T,passage当做H。下面是match-LSTM的构建,实质上就是一个attention机制。
G i → = tanh ⁡ ( W q H q + ( W p h i p + W r h i − 1 r → + b p ) ⊗ e Q ) , α i → = s o f t m a x ( w T G i → + b ⊗ e Q ) \overrightarrow{G_{i}}=\tanh(W^qH^q+(W^ph^p_i+W^r\overrightarrow{h_{i-1}^r} + b^p) \otimes e_{Q}),\\ \overrightarrow{\alpha_i}=softmax(w^T\overrightarrow{G_i} + b \otimes e_Q) Gi =tanh(WqHq+(Wphip+Wrhi1r +bp)eQ),αi =softmax(wTGi +beQ)
这里可以针对passage每一个词语输出一个 α i → \overrightarrow{\alpha_i} αi 向量,这个向量维度是question词长度,故而这种方法也叫做question-aware attention passage representation。

下面将attention向量与原问题编码向量点乘,得到passage中第i个token的question关联信息,再与passage中第i个token的编码向量做concat,粘贴为一个向量 z i → \overrightarrow{z_i} zi ,然后输出到LSTM网络中。
z i → = [ h i p H Q α i T → ] h i r → = L S T M → ( z i → , h i − 1 r → ) \overrightarrow{z_i}=[\begin{matrix} h_i^p\\ H^Q\overrightarrow{\alpha_i^T} \end{matrix}]\\ \overrightarrow{h_i^r}=\overrightarrow{LSTM}(\overrightarrow{z_i}, \overrightarrow{h_{i-1}^r}) zi =[hipHQαiT ]hir =LSTM (zi ,hi1r )
上述就是match-LSTM的标准结构,这里更进一步,为了捕捉到更丰富的上下文信息,再增加一个反向match-LSTM网络。基本结构同上。最终,只需要将正向match-LSTM输出的隐含层向量 H r → \overrightarrow{H_r} Hr 和反向match-LSTM输出的隐含层向量 H r ← \overleftarrow{H_r} Hr 拼接起来即可。
H r = [ H r → H r ← ] H^r=[\begin{matrix} \overrightarrow{H_r}\\ \overleftarrow{H_r} \end{matrix}] Hr=[Hr Hr ]

Answer-Pointer层

这块分为两种方法,即上文所提到的sequence model和boundary model,分别如下:

Sequence Model

序列模型不限定答案的范围,即可以连续出现,也可以不连续出现,因此需要输出答案每一个词语的位置。又因答案长度不确定,因此输出的向量长度也是不确定的,需要手动制定一个终结符。假设passage长度为P,则终结符为P+1。

对于pointer net网络,实质上仍然是一个attention机制的应用,只不过直接将attention向量作为匹配概率输出。
F k = tanh ⁡ ( V H r + ( W a h k − 1 a + b a ) ⊗ e p + 1 ) β k = s o f t m a x ( V T F k + c ⊗ e p + 1 ) h k a = L S T M → ( H r β k T , h k − 1 a ) F_k=\tanh(VH^r+(W^ah_{k-1}^a + b^a) \otimes e_{p+1})\\ \beta_k=softmax (V^TF_k + c \otimes e_{p+1})\\ h_k^a=\overrightarrow{LSTM}(H^r\beta_k^T, h_{k-1}^a) Fk=tanh(VHr+(Wahk1a+ba)ep+1)βk=softmax(VTFk+cep+1)hka=LSTM (HrβkT,hk1a)
答案 a a a第k个词对应passage位置为:
p ( a k = j ∣ a 1 , a 2 , . . . , a k − 1 , H r ) = β k , j p(a_k=j|a_1,a_2,...,a_{k-1},H^r)=\beta_{k,j} p(ak=ja1,a2,...,ak1,Hr)=βk,j
对于输出,直接搜索所有位置,并取最大概率的即可;训练过程中,设计对数损失函数如下:
− ∑ n − 1 N log ⁡ p ( a n ∣ P n , Q n ) P ( a ∣ H r ) = ∏ k ( a k ∣ a 1 , a 2 , . . . , a k − 1 , H r ) -\sum_{n-1}^{N}\log p(a_n|P_n,Q_n)\\ P(a|H^r)=\prod_k(a_k|a_1,a_2,...,a_{k-1},H^r) n1Nlogp(anPn,Qn)P(aHr)=k(aka1,a2,...,ak1,Hr)

Boundary Model

边界模型直接假设答案在passage中连续出现,因此只需要输出起始位置s和终止位置e即可。基本结构同Sequence Model,只需要将输出向量改为两个,并去掉终结符。

同样,上述两种模型都可以改用双向LSTM。

实验

实验是在SQuAD数据库上进行的,包括两个评价指标:EM和F1,其中,EM指完全匹配程度。结果如下:

思考

  1. 观测数据发现长的答案更难预测,当答案包含大于9个tokens时,f1值跌落至55%左右,em值到30%左右
  2. 该模型更适合“是什么”类型问题,对于“为什么”类型效果较差
  3. 作者对上文中match-LSTM层的attention向量 α \alpha α做可视化,与事实相符,该向量应该是描述question与passage每一个位置的相关程度的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值