一种基于人工智能技术的给水管网在线监测系统

本文详细阐述了给水管网在线监测系统利用人工智能技术实现漏损检测与定位、水质智能评估、管网健康度评估三大关键功能的业务逻辑。针对各功能,分别从数据采集与预处理、人工智能模型构建与训练以及实时应用逻辑等方面展开介绍,通过传感器采集多类型数据,构建适配模型并训练优化,最终实现对供水管网运行状态的精准监测、评估与预警,旨在提升供水管网运行的安全性、可靠性与智能化管理水平。

 引言  

      随着城市化进程的加速,给水管网作为城市基础设施的重要组成部分,其安全稳定运行对于保障居民生活用水和城市正常运转至关重要。然而,供水管网在实际运行中面临诸多问题,如管道漏损难以及时发现、水质变化不易精准把控以及管网健康度等,这些问题不仅影响供水质量,还可能造成水资源浪费、经济损失甚至对城市环境带来负面影响。

      传统的监测方法往往依赖人工巡检和定期检测,存在时效性差、准确性不足等局限性。近年来,人工智能技术的飞速发展为供水管网的智能化监测提供了有力手段。借助人工智能在数据处理、模式识别以及预测分析方面的优势,构建供水管网在线监测系统,能够实时、精准地对管网的漏损情况、水质状况以及设备运行状态进行监测、评估和预警,从而有效弥补传统监测方式的不足,更好地保障供水管网的安全可靠运行,提高供水系统的整体管理水平。在此背景下,我司研发了一种基于人工智能技术的给水管网在线监测系统的关键功能及其业务逻辑。

一、漏损检测与定位 

1.1数据采集与预处理

  • 传感器部署:根据供水格局在供水管网的水源地、主干管与支管的连接处、不同供水区域的分水点等关键位置布点,同时要考虑水流的流向、流速变化规律,例如,在水流的汇合处、水流方向改变处、管道坡度变化处等位置设置监测点,这些地方水流的水力条件较为复杂,流量容易出现相应变化,合理布点对其进行监测才能全面把握管网内实际的流量状态。

  • 数据收集:传感器按照预设的时间间隔持续采集数据,并将带有时间戳、传感器位置标识的数据通过有线或无线通信网络(如 4G/5G、NB等)传输到系统的数据中心。

  • 预处理:对采集到的原始数据进行预处理操作,数据归一化(将不同量级的数据统一到一个标准范围内,便于后续模型处理)、填补缺失值(通过插值等方法保证数据的连续性)等,确保数据质量,为后续人工智能分析提供可靠的输入。

1.2人工智能模型构建与训练

  • 特征提取:从预处理后的传感器数据中提取与漏损相关的特征,例如流量数据的突变特征(通过计算相邻时间点流量差值、流量变化率等)、流量的异常增减趋势(对比历史同期流量以及上下游流量差异)等。

  • 模型选择:基于卷积神经网络(CNN)结合循环神经网络(RNN)的架构。CNN 可以自动提取数据中的局部空间特征,RNN 则擅长处理具有时间序列特性的数据(如传感器数据随时间的变化趋势),二者结合能更好地对复杂的供水管网漏损情况进行建模。

  • 训练数据准备:收集大量过往的供水管网运行数据,其中一部分是已知存在漏损情况的数据(标记好漏损位置、漏损程度等详细信息),另一部分是正常运行状态的数据,将这些数据按照一定比例划分为训练集、验证集和测试集。

  • 模型训练与优化:利用训练集对构建好的模型进行训练,通过调整模型的参数(如神经网络的权重、偏置等),使得模型在验证集上的性能达到最优(例如通过最小化预测结果与实际标签之间的误差函数,如均方误差等),并在测试集上进行最终的性能评估,确保模型具有良好的泛化能力,能够准确判断新的数据中是否存在漏损情况。

    图片

1.3实时检测与定位逻辑 

  • 实时数据输入:在系统运行过程中,将实时采集并预处理后的传感器数据输入到已经训练好的人工智能模型中。

  • 漏损判断:模型根据学习到的特征模式,对当前输入的数据进行分析判断,输出是否存在漏损的值(根据管道辖区具体的用户用水情况设定阈值判断)。

  • 定位计算:若判定存在漏损,基于管网GIS的拓扑结构数据(预先录入系统,详细记录各管道段、节点、传感器的连接关系和地理位置信息)以及传感器采集数据的空间分布特点,利用机器学习中的回归算法,综合考虑各传感器数据异常的程度、时间先后顺序等因素,计算出漏损点在管网中的具体地理位置坐标,并将结果展示在系统的可视化界面上,同时触发报警信息,通知相关运维人员及时处理。

图片

图片

二、水质智能评估  

2.2 数据采集与整合

  • 水质传感器布点:根据管网结构及居民用水情况合理布点,例如大型居民区、医院、学校等用水量较大且人员密集场所的用水入口处,这些地方用水人群广泛,能体现出对居民、公共服务机构等普遍供应的水质情况。

  • 环境数据接入:除了水质传感器数据,有条件的企业还可以接入与水质可能相关的外部环境数据,例如周边污染源的排放情况(通过与环保部门的数据共享接口获取附近工厂、污水处理厂等的排放数据)、气象数据(温度、湿度、降雨量等,可从气象部门获取相关数据)、供水水源的水质变化情况(来自水源地的监测数据)等,将这些数据与水质传感器采集的数据进行整合,为全面评估水质提供多维度信息。水厂、管网参考《生活饮用水卫生标准》(GB5749-2022)数据采集接入。

  • 数据采集频率设定:根据水质指标的稳定性和变化规律,设定不同的采集频率,如 pH值、溶解氧等相对稳定的指标可每 15 分钟采集一次,余氯含量、浊度等易变化指标每 5 分钟采集一次,外部环境数据则按照对应数据源的更新频率同步接入系统。

2.3人工智能模型应用

  • 特征工程:对整合后的多源数据进行特征工程处理,提取有代表性的水质特征,例如计算不同水质指标之间的相关性特征(如 pH 值与重金属离子溶解度之间的关联特征)、水质指标随时间的变化斜率特征(反映水质的动态变化趋势)、与环境因素的交互特征(如降雨量与浊度变化的关联特征)等,将这些特征组合成特征向量,用于后续模型的输入。

  • 模型选择与构建:采用机器学习中的集成学习模型,随机森林(Random Forest)、梯度提升决策树(GBDT)。可以综合多个决策树的预测结果,具有较好的鲁棒性和准确性,能够处理复杂的非线性关系,适合对水质这样受多种因素影响的对象进行评估。

  • 训练过程:收集管网历史的水质监测数据以及对应的综合环境数据,同时依据专业的水质检测实验室结果对这些历史数据进行水质等级标注(如一类水、二类水、轻度污染等),将标注好的数据划分为训练集、验证集和测试集,利用训练集对模型进行训练,调整模型参数使模型在验证集上达到最佳性能,再通过测试集评估模型的泛化能力,确保其能准确对新的水质数据进行评估。

2.3实时水质评估与预警逻辑

  • 实时数据输入:将实时采集的水质传感器数据以及同步获取的外部环境数据经过特征工程处理后,输入到已经训练好的人工智能模型中。

  • 水质评估:模型根据学习到的特征与水质等级之间的映射关系,输出当前水质对应的等级评估结果,并在系统可视化界面上以直观的方式(如不同颜色标识不同水质等级的区域地图、水质等级动态变化曲线等)展示出来,方便管理人员实时了解水质整体情况。

  • 预警触发:当评估结果显示水质限制下降到接近或低于设定的警戒阈值(如游离氯管网末梢大于0.05mg/L)时,系统自动触发预警机制,通过短信、APP 推送、系统弹窗等多种方式通知相关水质管理和运维人员,同时提供详细的水质指标变化情况分析,辅助人员快速定位可能导致水质异常的原因,采取相应的应对措施,如调整水处理工艺、排查污染源等,保障供水水质安全。

    图片

三、管网健康评估  

     通过采集管网历史数据(如管龄、管材、管径、埋深)、外部动态数据(区域气温、降水、维修、破路、交通流量)以及管网破损的历史数据(破损位置、破损类型、破损原因、维修方法、故障后果、维修费用),采用深度神经网络模型构建管网失效分析模型,对管网当前的失效概率进行预测,支持评定管网修复/更新改造的优先级,明确管网修复/更新改造的范围,并评估远期的供水服务水平及满足此水平所需的管网修复/更新改造的费用。

图片

3.1管网数据采集与特征提取

  • 管网状态监测:需要对给水管网相关设备的实时状态进行监测,部署压力传感器、振动传感器、声学监测设备等,实时采集管道压力、振动幅度、噪声频谱等数据,及时掌握设备的实际运行状况,为后续分析提供基础数据。

  • 运行参数收集:在管网关键节点(如供水端、末端、分支交汇处)安装智能监测设备,采集像水流速度、流量大小、不同节点的水压值等,这些参数能反映管网的运行效能和潜在问题。

  • 特征提取:如根据管龄、管材、口径、埋深参数属性可能影响管道寿命的关键特征,外部环境如气温日较差、累计降水量、交通荷载强度、历史故障关联特征如故障频次、维修响应时间、同类故障复发率、管道拓扑结构(基于GIS生成邻接矩阵)、区域土壤腐蚀性(结合地质勘探数据)。

3.2 人工智能模型构建与训练

  • 模型选型:根据给水管网数据的特点以及要解决的失效预测等问题,采用深度神经网络模型架构,卷积神经网络(CNN)处理空间特征相关的数据。

  • 训练数据集准备:涵盖各类可能影响管网健康度的因素相关的数据,例如不同管材在不同环境下的长期运行数据、不同管径管道对应的流量变化数据等,同时还要对数据进行合理的标注、分类等预处理工作,使其能够满足模型训练的要求。

  • 模型训练优化:在训练过程中,通过调整合适的超参数(如学习率、迭代次数等),采用合适的优化算法(如梯度下降法的不同变种),不断优化模型的性能,减少预测误差,提高对管网失效概率预测的准确性。

3.3健康度预警与决策支持逻辑

  • 实时数据输入:基于管网GIS,将实时采集到的管网运行数据、外部环境数据等输入到已经训练好的模型中,让模型能够依据最新情况进行分析判断。

  • 健康度预测:基于已构建好并经过训练优化的模型,结合实时输入的数据,对管网当前的健康度进行动态预测,得出准确的失效概率等关键指标数值,如评分分级:

  1. 0.8~1.0 危险

  2. 0.6~0.8 较差

  3. 0.4~0.6 一般

  4. 0.2~0.4 较好

  5. 0.0~0.2 健康

  • 决策支持:基于健康度评分、故障后果(影响用户数)、维修成本,构建多目标优化模型,生成Pareto最优解集。示例:某管段健康度55分,影响5万居民,维修成本200万元 → 优先级评级为A1(最高)。

图片

图片

图片及技术提供来源(深圳熵澜水务技术开发有限公司 )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

熵澜水务研究

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值