本文提出了基于GIS+AI技术融合的管网巡检系统设计思路,从系统设计架构、主要功能模块、AI巡检报告关键技术等方面进行了详细阐述。侧重介绍了AI 巡检报告在管网巡检系统中起着关键作用,能深度剖析巡检数据,为管网维护提供科学依据,并对未来技术进行展望。
管网巡检现状与挑战
1.1 管网规模庞大且布局复杂
随着城市的更新范围不断拓展,促使城市供水管网不断延伸。在大型城市中,供水管网的总长度可达数千公里,覆盖城市的每一个角落,包括繁华的商业区、人口密集的住宅区以及新兴的工业园区。同时,不同类型的管网形成极为复杂的空间布局。而且,随着城市的更新改造,老旧管网与新建管网相互交织,进一步加剧了管网布局的复杂性,给巡检工作带来极大困难。
1.2 传统人工巡检效率低下
长久以来,水司企业巡检在管网巡检工作中占据主导地位。巡检人员需沿着管网线路,步行或借助交通工具,逐一检查管网设施。这种方式不仅耗费大量时间和人力,而且效率极低。可能需要数周时间才能完成一轮全面巡检。
1.3 巡检数据记录与分析困难
全国绝大部分水司企业没有完善的管网巡检信息化系统,巡检人员通常采用纸质记录或简单电子表格记录巡检数据,包括管网设施的运行状态、是否存在故障或异常等信息。这种记录方式不仅效率低下,而且数据格式不规范,后期整理和分析难度大。同时,由于数据分散在不同巡检人员手中,缺乏有效的整合与共享机制,导致难以对管网整体运行状况进行全面、深入的分析,无法为管网的科学运维提供有力的数据支持。
随着城市的快速发展,管网规模不断扩大,结构愈发复杂,对管网巡检的要求也越来越高。传统的巡检方式已无法满足城市对管网安全高效管理的需求,开发一种新的管网巡检系统迫在眉睫,以应对日益严峻的管网安全挑战,保障城市的稳定运行。
GIS 与 AI 技术融合的优势
GIS(地理信息系统)是一种基于计算机系统的技术,它能够对地理空间数据进行采集、存储、管理、分析和可视化展示。其基本原理是将现实世界中的地理要素,如地形、道路、建筑物等,通过数字化的方式转化为计算机能够处理的空间数据,并结合属性数据,如名称、类型、面积等,以地图的形式呈现出来,方便用户直观地理解和分析地理信息。
AI(人工智能)则是致力于让计算机模拟人类的智能行为,包括学习、推理、问题解决等。机器学习是 AI 的核心技术之一,通过让计算机从大量的数据中学习模式和规律,从而实现对未知数据的预测和判断。深度学习作为机器学习的一个分支,利用深层神经网络,在图像识别、语音识别等领域取得了显著的成果。
当 GIS 与 AI 技术融合时,能为管网巡检系统带来诸多显著优势。智能分析是两者融合的又一关键优势。AI 强大的数据分析和处理能力,能够对管网巡检过程中产生的海量数据进行深入挖掘和分析,通过对历史数据、实时监测数据以及环境数据等多源数据的综合分析。
管网巡检系统设计
3.1 系统技术架构
管网巡检系统采用分层架构设计,主要包括数据层、应用层和用户层,各层之间相互协作,共同实现管网巡检的智能化管理。
数据层是整个系统的基础,负责存储和管理管网相关的各类数据。其中,空间数据库用于存储管网的地理空间数据,包括管道的位置、走向、拓扑关系等,这些数据以矢量图形的形式存储,能够直观地展示管网的分布情况。属性数据库则存储管网设备的属性信息,如管道的材质、管径、使用年限、生产厂家等,以及巡检过程中产生的数据,如巡检记录、设备故障信息、维修记录等。
应用层是系统的核心,实现了管网巡检的各种业务逻辑和功能。它通过调用数据层的接口,获取和处理数据,并将处理结果返回给用户层。应用层主要包括数据处理模块、分析决策模块和功能实现模块。数据处理模块负责对采集到的数据进行清洗、转换、整合等预处理工作,确保数据的准确性和一致性。分析决策模块利用 AI 技术和数据分析算法,对管网数据进行深度挖掘和分析,为管网的管理和维护提供科学的决策依据。功能实现模块则实现了系统的各项具体功能,如巡检计划制定、轨迹监控、巡检上报、报表生成等,满足用户的实际业务需求。
用户层是用户与系统交互的界面,提供了直观、便捷的操作方式。用户可以通过 PC 端、移动端等多种终端设备访问系统,根据自己的权限进行相应的操作。在 PC 端,用户可以使用浏览器登录系统,查看管网的详细信息、生成报表、进行数据分析等。移动端则为巡检人员提供了方便的操作工具,他们可以通过手机或平板电脑下载安装巡检 APP,实现巡检任务的接收、轨迹记录、问题上报等功能。
各层之间通过接口进行通信,确保数据的传输和交互顺畅。数据层为应用层提供数据访问接口,应用层通过这些接口获取和存储数据。应用层为用户层提供业务功能接口,用户层通过调用这些接口实现各种操作。这种分层架构设计使得系统具有良好的可扩展性、可维护性和灵活性,便于系统的升级和优化。
图1 管网巡检系统设计架构
系统功能模块
4.1 数据看板专题
数据看板专题是管网巡检系统的重要展示窗口,以直观、可视化的方式呈现管网运行的关键信息,为管理者提供决策支持。通过可视化的图表,展示各个区域的巡检完成情况,包括已巡检的管网长度、未巡检的管网长度以及巡检进度百分比。管理者可以一目了然地了解巡检工作的整体进展,对进度滞后的区域及时调整资源分配,保证巡检工作按时完成。还能展示不同巡检人员的工作进度,便于对巡检人员的工作效率进行评估和考核。
4.2 巡检计划
巡检计划模块根据管网分布、设备重要性等因素,制定科学合理的巡检计划。可将管网划分为不同的区域、线路、点位复杂程度和巡检难度,合理安排巡检人员和巡检时间。通过智能提醒功能通过短信、APP 推送等方式,在巡检任务开始前提醒巡检人员,避免遗忘。当巡检人员到达巡检地点附近时,系统自动推送任务详情和相关注意事项,确保巡检人员做好充分准备。如果巡检人员未能按时完成巡检任务,系统会及时发出提醒,督促其尽快完成。
4.3轨迹监控
轨迹监控模块利用北斗卫星和 GIS 技术,实现对巡检人员轨迹的实时监控,确保巡检工作的正常进行。其原理是巡检人员携带的移动终端(如手机、平板电脑)内置 北斗导航模块,实时采集巡检人员的位置信息,将巡检人员的位置信息在电子地图上进行实时标注,从而实现对巡检人员轨迹的实时监控。
轨迹回放功能允许管理人员在需要时查看巡检人员的历史轨迹,了解巡检人员的工作路径和停留时间。通过轨迹回放,管理人员可以检查巡检人员是否按照规定的路线进行巡检,是否在每个巡检点都进行了停留和检查,对巡检人员的工作进行有效监督和评估。如果发现巡检人员的轨迹异常,如偏离规定路线、长时间停留等,管理人员可以及时与巡检人员取得联系,了解情况,确保巡检工作的正常进行。
4.4巡检上报
巡检上报是巡检人员在发现问题时,通过移动端快速上报问题的功能模块,当巡检人员发现管网设备存在故障、损坏或其他安全隐患时,通过巡检 APP,点击上报按钮,即可进入上报界面。在上报界面中,巡检人员可以通过文字描述详细说明问题的情况,包括问题的位置、现象、发现时间等。还可以通过拍照、录像等方式,记录问题现场的实际情况,为后续的维修和处理提供更直观、准确的信息。
4.5巡检报表
巡检报表模块实现了系统自动生成巡检报表的功能,为管网管理和维护提供重要的数据支持。系统根据巡检任务的执行情况和巡检人员上报的数据,自动生成巡检报表。
4.6 AI 巡检报告
AI 巡检报告模块基于 AI 技术对巡检数据进行深度分析,生成具有重要参考价值的巡检报告,为管网健康状况评估和潜在问题预测提供有力支持。其原理是 AI 算法首先对大量的历史巡检数据、设备运行数据、环境数据等进行学习和训练,建立管网运行的模型和故障预测模型。在生成巡检报告时,AI 算法将实时采集的巡检数据与模型进行比对和分析,识别数据中的异常模式和潜在风险。
基于 AI 分析的结果,系统生成详细的巡检报告。报告内容包括管网的健康状况评估,对管网的整体运行状态进行打分和评价,指出存在的问题和风险点;潜在问题预测,预测管网未来可能出现的故障和隐患,并提供相应的预警信息;建议措施,根据评估和预测结果,提出针对性的维护建议和改进措施,如设备维修、更换计划,巡检策略调整等。这些报告为管网管理者提供了科学、准确的决策依据,帮助他们及时发现和解决管网运行中的问题,保障管网的安全稳定运行。
通过对话可生成所需月份的巡检报告
AI 巡检报告技术实现
5.1 数据收集与预处理
在 AI 巡检报告生成过程中,数据收集是基础且关键的第一步。系统从多源获取管网巡检数据,涵盖管网历史巡检参数,如巡检人员现场采集的图片、视频以及文字记录,还有历史巡检数据与设备档案信息等。这些数据格式多样、来源广泛,质量参差不齐,因此需要进行严格的预处理。
5.2 特征工程与模型训练
预处理后的数据需提取关键特征,这些特征是管网巡检数据的重要表征。例如,在管道泄漏次数,阀门故障率、管道口径、材质类型、敷设年限、维保次数等都是关键特征。利用数据挖掘和机器学习算法,从巡检数据中筛选出最具代表性、对管网故障诊断和评估最有价值的特征组合。
完成特征工程后,针对不同的巡检任务和分析目标,通过 AI 模型进行训练。训练过程中,将大量历史数据按一定比例划分为训练集、验证集和测试集。在训练集上不断调整模型参数,使其最小化损失函数,验证集用于监控模型训练过程,防止过拟合,测试集则用于评估训练好的模型性能。
5.3 巡检报告生成与可视化
基于 AI 模型对本月巡检数据和历史数据的综合分析结果,系统对话模式生成巡检报告(PPT格式)。报告内容丰富,包括管网整体运行状态评估、各关键部位健康状况分析、已发现问题的详细描述(如故障类型、位置、严重程度)以及针对潜在风险的预警信息。对于已出现的故障,报告还会提供可能的原因分析与推荐的维修措施。
结论与展望
基于 GIS+AI 技术融合的管网巡检系统,为管网管理带来了革命性的变革,具有显著的优势和重要的应用价值。通过精准定位、智能分析等功能,为决策者提供科学、准确的管网运行数据支持。
在技术发展方向上,多源数据融合将更加深入。除了现有的地理空间数据、管网运行数据和巡检数据外,还将融合更多类型的数据,如气象数据、地质数据、城市规划数据等。通过对这些多源数据的综合分析,能够更全面地了解管网的运行环境和潜在风险,进一步提高故障预测和风险评估的准确性。