探索Qdrant:使用Langchain进行向量相似性搜索的强大工具

引言

在现代的应用程序中,处理大型数据集进行高效的相似性搜索对于实现语义匹配、个性化推荐和自然语言处理等任务至关重要。Qdrant 是一种向量相似性搜索引擎,为存储、搜索和管理向量及其附加负载提供便捷的API。本文将探讨如何结合Langchain使用Qdrant进行密集、稀疏及混合检索,为开发者提供实用的实现指导。

主要内容

Qdrant的运行模式

Qdrant提供多种运行模式,包括本地模式、Docker部署和Qdrant Cloud。在不同的模式下,会有一些细微的差别:

  • 本地模式:不需要服务器,适合测试或存储少量向量。
  • Docker部署:适合在容器化环境中运行。
  • Qdrant Cloud:提供托管服务,减少维护工作。

要开始使用,请按照安装说明进行设置。

准备工作

安装所需的库:

%pip install -qU langchain-qdrant 'qdrant-client[fastembed]'

对于本地模式,你可以选择将向量存储在内存中或磁盘上:

内存中存储向量

这是为了快速测试和实验:

from langchain_qdrant import QdrantVectorStore
from qdrant_client import QdrantClient
from qdrant_client.http
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值