引言
在现代的应用程序中,处理大型数据集进行高效的相似性搜索对于实现语义匹配、个性化推荐和自然语言处理等任务至关重要。Qdrant 是一种向量相似性搜索引擎,为存储、搜索和管理向量及其附加负载提供便捷的API。本文将探讨如何结合Langchain使用Qdrant进行密集、稀疏及混合检索,为开发者提供实用的实现指导。
主要内容
Qdrant的运行模式
Qdrant提供多种运行模式,包括本地模式、Docker部署和Qdrant Cloud。在不同的模式下,会有一些细微的差别:
- 本地模式:不需要服务器,适合测试或存储少量向量。
- Docker部署:适合在容器化环境中运行。
- Qdrant Cloud:提供托管服务,减少维护工作。
要开始使用,请按照安装说明进行设置。
准备工作
安装所需的库:
%pip install -qU langchain-qdrant 'qdrant-client[fastembed]'
对于本地模式,你可以选择将向量存储在内存中或磁盘上:
内存中存储向量
这是为了快速测试和实验:
from langchain_qdrant import QdrantVectorStore
from qdrant_client import QdrantClient
from qdrant_client.http