- 博客(27)
- 收藏
- 关注
原创 DshanPI-A1 RK3576 gmrender-resurrect B站投屏
是一款接收 DLNA 服务内容,并通过 GStreamer 播放的工具,可直接配置为 DLNA 客户端。注:此操作会暂时让系统无法识别 PulseAudio 设备,需恢复时执行解除屏蔽命令。:已提前实现 GStreamer 硬件加速播放视频,满足高清流解码需求。屏蔽PulseAudio后 gst会用alsa来播放音频。:B 站 DLNA 投屏时,会发送。可以通过alsamixer控制音量。正常出声音,说明音频链路恢复。可直接调用硬件加速播放。(类似直播流),通过。
2025-10-16 00:23:06
401
原创 DshanPI-A1 RK3576 gstreamer播放16路视频与硬件加速
实际上rga也可以拼接,但是gst的元件上没有实现 直接用rga编程是可以拼接的。通过以下命令实时监控 VPU/RGA/GPU 占用率(建议用。若视频分辨率为 720P,需全屏适配 1080P 屏幕,通过。:负责图像缩放、格式转换(如 NV12→RGBA),可通过。:负责视频解码(如 H.264 硬解),核心元件。,可减轻 GPU 负载,尤其适合多视频播放场景。不支持 NV12,需转 RGB 格式。不支持 RGB/BGR 格式,仅支持。:负责视频渲染、多画面拼接(如。MP4 文件是「容器」,需通过。
2025-10-13 00:27:34
1067
原创 DshanPI-A1 RK3576 armbian远程桌面
使用设备:DshanPI-A1,搭载 Armbian 系统,窗口系统为 Wayland,GPU 采用开源驱动。对 Wayland 支持不佳,会以兼容模式开启 X11 桌面,导致 OpenGL 无法调用 GPU 加速。在 Windows 端打开「远程桌面连接」,输入设备 IP、用户名及密码。,输出显示 Mali GPU 信息(OpenGL 支持正常);,同样检测到 Mali GPU(OpenGLES 支持正常)。结论:远程桌面可正常调用 GPU 加速,满足需求。重启设置窗口(关闭后重新打开),依次进入。
2025-10-12 02:04:17
309
原创 RK 系列 GPU 驱动检查
在调试一块板卡时发现 GPU 驱动存在异常。当时通过 GST 播放视频,想查看 GPU 占用率,却发现按照 RK 系列通常的查询方法无法获取(设备节点不存在),由此怀疑 GPU 驱动未正常加载。《香橙派 5 rk3588/rk3588s benchmark sbc bench 性能测试 OpenGL 跑分基于香橙派 5 plus》《Rockchip RK3399 - Mali-T860 GPU 驱动(mesa+Panfrost)》(GPU 硬件加速)(GPU 硬件加速)
2025-10-08 13:28:50
395
原创 香橙派 RK3588 部署 DeepSeek
用于将 CPU、NPU、GPU、DDR 的参数调至最高(提升运行效率)转模型对 PC 配置要求较高,需安装对应工具,建议直接使用转好的模型。香橙派 RK3588 部署 DeepSeek。:需确保 NPU 内核版本为。:用于读取 CPU 峰值性能。:用于读取 NPU 峰值性能。
2025-08-10 14:36:47
744
原创 香橙派 RK3588 部署千问大模型 Qwen2-VL-2B 推理视频
视频输入为一条网络流,利用大模型对视频中的图像帧进行推理。由于大模型推理耗时长,无法对每帧都进行推理,因此采用跳帧推理的方式:当推理完一帧后,期间会跳过若干帧,然后立即推理最新的一帧。利用 rga 将 nv12 图像进行放缩和转 rgb 操作,此过程采用 letterbox 方式,主要目的是保持宽高等比放缩。将用于推理的图像(即图像编码前的图像),通过 qt 适配 qwidget 和 opengles 的方式进行渲染。借助 rknn 将提示词和图像向量输入大模型进行推理,推理结果直接打印出来。
2025-08-09 19:55:58
713
1
原创 香橙派 RK3588 部署千问大模型 Qwen2-VL-2B 多轮交互式对话
月球表面是灰色和黑色相间的,而地球表面则是绿色和黄色相间的。这张图片展示了一位宇航员坐在月球上,手里拿着一瓶绿色的啤酒。背景是地球和星空,给人一种在太空中享受饮料的感觉。香橙派 RK3588 部署千问大模型 Qwen2-VL-2B 多轮交互式对话。结合图片,说明下月球和地球表面颜色相同吗,为什么?图片中的月球表面是灰色和黑色相间的。图片中的地球是绿色和黄色相间的。图片中的星空是蓝色和白色的相间。图片中月球表面是什么颜色的?(避免 PC 配置限制)图片中地球是什么颜色的?图片中星空是什么颜色的?
2025-08-09 17:02:19
525
原创 香橙派 RK3588 部署千问大模型 Qwen2-VL-2B
模型要求输入图像尺寸为 392×392。模型加载耗时:2313.00 毫秒。图像编码耗时:3213.80 毫秒。大模型处理图片时,需要先通过。:读取 CPU 峰值性能。:读取 NPU 峰值性能。(提取码:rkllm):纯文本大模型推理程序。
2025-08-08 02:01:55
671
原创 rk3588桌面系统qt的qwidget在x11对接opengles渲染的多路播放器22路测试
基于第一种做了优化,增加一个缓冲空间,根据乒乓缓冲原理,把原本拷贝 + 渲染串行做成异步并行,减少了渲染耗时。在底层会造成至少两次数据拷贝,一次拷贝到窗口服务器,一次拷贝到 gpu 驱动,对 cpu、内存耗时都不理想,适合进行简单的着色器和纹理连接的测试。一般容易想到为了 cpu 高效选择触发的方式,但容易忽略的是这种方式会造成有时多次 update 被合并成一次刷新执行,每次执行只出一帧,导致偶尔会有几帧在队列里出不来而掉帧,所以建议使用轮询的方式。系统 ubuntu桌面kernel 5.10。
2025-07-26 02:24:40
1215
原创 opengles渲染方式glTextImage和eglImage性能对比
在一些推理的应用中有人会用opencv对接opencl来调用gpu加速一些图像处理 发现很慢后说是处理图像时要把图像从系统内存上传到gpu内存很慢导致的 实际上移动平台的gpu没有独立的显存 就像pc的集成显卡用的是系统内存 而不是独显的专有内存 实际上是底层会有内存拷贝造成的。方案因内存操作复杂,CPU 调度压力大(系统 + 程序 CPU 均更高),内存管理开销导致系统 / 程序内存占用上升;凭借零拷贝机制,在耗时和资源效率上优势明显,是高性能音视频渲染场景的更优解。
2025-07-12 20:36:06
948
原创 香橙派 RK3588 的 5 路 1080p 实时关键点检测
直接在 NV12 图像上用 CPU 画框(减少 NV12 转 RGB 的耗时),理论上可换 RGA 画框,但 CPU 处理小像素点场景更快,需实测决定。RGA 使用注意事项:需查阅官方文档,避免 4G 内存报错、图像抖动等问题(如限定 RGA3 核、使用专门内存分配器)。为减少 CPU 占用和提高帧率,优先使用 RGA 而非 OpenCV,实现图像放缩和 NV12 转 RGB。:将每路视频后处理的图像放缩并拼接,使用 RGA2(需 4G 内存分配器,因 RGA3 已高负载)。184%(满载 800%)
2025-06-22 19:06:36
789
原创 香橙派rk3588的实时关键点检测多线程推理的资源占用率测试
核心操作:放缩、NV12 转 RGB,采用 Letterbox 方式(宽高等比放缩、黑边填充、图像居中,需位移填充和坐标处理)。- 总系统:11.5%+22.7%+7.6%+11.1%+19.6%+8.6%+4.1%+10.2%=95.4%功能:NMS 过滤、画框画点线(CPU 实现,直接在 NV12 图像上操作,减少格式转换耗时),暂未实现标签打标。分辨率:1080×1920,帧率:30fps,码率:2793kbps。来源:B 站视频(UP 主:麻辣纪子),PC 推流至 RK3588。
2025-06-21 19:34:00
761
原创 香橙派rk3588的16路1080p实时目标检测rknn多线程推理
FFmpeg+rtsp_demo 实现稳定的拉流与推流,TCP 传输保证可靠性。
2025-06-14 19:35:53
1381
3
原创 rknn上下文复用性能测试
4路视频 每路视频都用相同的模型 每路检测都用3个rknn上下文 然后所有rknn上下文都复用第一个 即第一路视频的第一个rknn上下文正常初始化 第一路视频的第二第三个rknn和其他三路视频的所有rknn都复用第一路视频的第一个rknn上下文 理论上节省原本的11/12内存。当所有视频使用相同模型时,全量复用(所有上下文复用第一个)使应用内存进一步降至 259MB,较无复用场景节省 109MB,内存节省比例达 29.6%,接近理论值 11/12(约 91.7%),说明相同模型下复用效率更高。
2025-06-14 16:56:01
702
原创 香橙派rk3588的rknn零拷贝接口性能测试
总 CPU 占用率反超非零拷贝(↑12%),可能因输出数据处理逻辑复杂或内存拷贝未优化,导致 CPU 资源低效占用。(较非零拷贝↓58.7%),表明输出零拷贝可能通过轻量化存储或避免结果缓存减少内存占用,适合内存敏感型场景。,尽管 CPU 负载较高,但应用程序内存消耗大幅减少(↓74.4% 对比全零拷贝),需权衡性能与内存资源。,以降低 CPU 负载、提升处理效率,尤其输入零拷贝对应用程序 CPU 优化最显著(↓35.5%)。,说明全流程零拷贝进一步释放了 CPU 资源,适合多任务并发场景。
2025-06-08 14:41:44
1439
原创 香橙派rk3588编程mpp解码rga拼接转格式opengles渲染的多路视频播放器32路测试
mpp解码为265 一个反常识的知识 一般解码265比解码264快 实测解码1080P@30 在h264时最多16路 在h265时最多32路。mem 56% 4.39GB (用户空间才占500MB 但是内核空间可能已经占了几G)rga拼接合成 将解码获得的nv12放缩 裁剪 然后拼接 将32路图像帧合成一帧。香橙派rk3588桌面系统编程32路1080p视频播放器。mpp解码h265获得nv12 注意解码器会有帧长度对齐。注意 这是远程桌面 会比实际接屏幕效果差一些。rga处理顺序调整 提高处理效率。
2025-06-02 22:43:07
416
原创 rga的4G内存报错和4G内存分配方法
mpp_buffer_group_get_internal申请的内存可以和mpp_frame关联 这样可以很方便的处理内存和图像帧跟视频的关系 因为mpp_frame存储了视频编解码需要的pts gop 等视频需要的信息。除了例程接口dma_buf_alloc方式可以分配4G内存外 解码mpp中的mpp_buffer的分配接口mpp_buffer_group_get_internal也可以分配4G内存。rga的库和mpp的库要保证是最新的 不然系统自带的库可能太老会分配失败。
2025-06-02 14:25:04
1243
原创 香橙派rk3588编程mpp解码rga拼接转格式opengles渲染的多路视频播放器16路测试
rga拼接合成 将解码获得的nv12帧裁剪掉对齐的多余部分 然后放缩拼接 将16路图像帧合成一帧。ffmpeg拉流rtsp获得h264 为了传输稳定配置rtsp over tcp。opengles对接X11渲染rgb 使用pbo双缓冲提高内存加载到GPU的效率。香橙派rk3588桌面系统编程16路1080p视频播放器。mpp解码h264获得nv12 注意解码器会有帧长度对齐。注意 这是远程桌面 会比实际接屏幕效果差一些。板卡 香橙派5 ultra。1080p@30 码率。系统 ubuntu桌面。
2025-05-27 02:23:29
416
原创 香橙派rk3588的rknn拉流多线程推理输出rtsp流服务的资源占用率测试
举个具体的例子 在3576上两个npu核 一个核推理耗时50ms 两个核进行多核推理 是两个核共同推理一帧 耗时40ms 仅减少10ms 总帧率是25 但是两个核进行多线程推理 是两个核分别推理一帧 一个核推理耗时50ms 单核帧率20 两个核总帧率20*2=40 一般为了高帧率而选择使用多线程推理。官方文档对多核推理的使用和调优有详细的说明 多核推理适用于模型网络更复杂的场景 多核推理的调度需要cpu参与 可以通过把程序绑定cpu大核和调中断来提高多核推理的效率。
2025-05-11 15:34:09
1946
原创 香橙派rk3588在ubuntu上使用qtcreator构建C++开发环境和通过mobaXterm远程打开qtcreator
其他图形界面程序同理 但是一些用到gpu渲染的程序可能不行 之前自己写的opengles对接x11渲染的程序就不能这样远程打开。然后在mobaXterm连接3588的ssh终端上直接执行qtcreator 就能在pc上打开3588上的qtcreator。有桌面环境的系统可以安装ide在板子系统上直接开发 但是这样需要另外的屏幕鼠标键盘 不太方便。选择non-qt project 选择plain c++ application 下一步。这里介绍一种在pc上远程打开板子系统上的ide的使用方法。
2025-04-30 01:15:40
413
原创 香橙派rk3588在ubuntu上测试rknn的C++调用npu例程rknn_yolov5_video_demo
这个程序会加载模型和读取输入视频 将视频解码成图片 对图片进行预处理 然后进行推理 根据推理结果对图片进行后处理 再输出带有推理信息的图片 最后把图片编码成视频。再拷贝一份原先解码出来的nv12 根据推理输出的坐标信息画框 这里画框没有用opencv和rga 而是直接根据nv12的排列方式直接修改图像数据。rknn_yolov5_video_demo是和rknn_yolov5_demo一起编译出来的。在rk3588上处理比较慢 如果时间太长可以按q提前退出 这样可以只转换一小段时间的h264。
2025-04-30 01:04:17
746
原创 香橙派rk3588在ubuntu上测试rknn的C++调用npu例程rknn_yolov5_demo
并且opencv放缩是实现letterbox方式的放缩 简单来说就是将输入图片宽高等比例放缩 多余的地方填黑 这样检测效果会好一些 而rga的放缩是非宽高等比例放缩。这个程序会加载模型和读取输入图片 对图片进行预处理 然后进行推理 根据推理结果对图片进行后处理 最后输出带有推理信息的图片。程序将检测结果可视化后保存为 ./out.jpg 文件 在该图像中 用边界框标记出检测到的目标 并显示类别名称和置信度。预处理完成后将图片传入npu推理 推理完成后将得到的数据进行后处理。# 删除损坏的软链接。
2025-04-26 18:08:28
906
原创 香橙派rk3588在ubuntu上测试rknn的C++调用npu例程rknn_mobilenet_demo
156: 0.984375:类别索引为 156 的概率为 0.984375,即模型认为输入图像最有可能属于第 156 个类别。第一个是废弃的 第二个是正在维护的 1.5GB 占用空间比较大 下载慢 可以在码云找个镜像。要导出变量 GCC_COMPILER 里面的例子是交叉编译的 而我们用本机编译 所以只需。这个例子内容是简单的加载模型 输入图片 进行推理的过程。可以用于简单的测试npu使用环境依赖是否正常。例子已经准备好了模型和测试图片。编译完成后可以进行运行测试了。注意有两个官方代码仓。
2025-04-26 16:44:19
401
原创 全志系列音视频个人作品锦集
承接上一篇预告的功能 上一篇链接 https://bbs.aw-ol.com/topic/5484 功能简介 实现rtsp/rtmp/http-flv服务 rtsp/rtmp推流外部服务器 mp4录制 实现web管理后台 可以在网页上查看tinyvision资源占用状态 配置摄像头分辨率 流地址配置 观看摄像机画面 录制管理 演示效果 web管理后台 在web上观看摄像机画面 录制管理 web管理后台实现原理 用nginx实现http服务器 然后web前端就是经典html js 后端接口是C艹写的...
2025-04-20 19:35:56
1737
原创 香橙派rk3588编程mpp解码rga转格式opengles渲染的视频播放器
香橙派rk3588在ubuntu桌面系统编程rtsp拉流mpp解码rga转格式opengles渲染x11窗口的视频播放器
2025-04-20 18:46:13
685
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅