machine learn
文章平均质量分 56
lalaladamxiya
少时诵诗书
展开
-
逻辑回归
逻辑回归用于分类,其本质是线性回归和一个非线性激活函数(sigmoid函数)。 $$ h(x)=w_1x_1+w_2x_2+…+w_nx_n+b$$ $$ f(x)=\frac{1}{1+e^{-h(x)}} $$ sigmoid函数具有连续可导的性质,并且可以将$h(x)$函数的值域压缩到[0,1]区间。x轴在0点对应y的值为0.5,这样可以将值小于0.5的样本分为负样本,值大于0.5的...原创 2018-08-14 09:22:37 · 190 阅读 · 0 评论 -
朴素贝叶斯估计
朴素贝叶斯估计 朴素贝叶斯估计使用数据的先验概率估计后验概率,其中数据的先验概率使用极大似然估计得到,方法的核心在于贝叶斯公式: P(Bi|A)=P(A,Bi)P(A)=P(A|Bi)P(Bi)∑ni=0P(Bi)P(A|Bi)P(Bi|A)=P(A,Bi)P(A)=P(A|Bi)P(Bi)∑i=0nP(Bi)P(A|Bi)P(B_i|A) = \frac{P(A, B_i)}{P(A)}=\...原创 2018-08-15 08:11:59 · 702 阅读 · 0 评论 -
支持向量机
支持向量机 算法思想 支持向量机(SVM)的基础思想是在空间中找到一个可以将正负样本点分开的分离超平面,并使支持向量到分离超平面的距离最大。 空间中点到平面的距离计算方法 假设空间中存在点x=(x1,x2,⋯,xn)x=(x1,x2,⋯,xn)x=(x_1,x_2,\cdots,x_n),存在平面f(x)=Wx+bf(x)=Wx+bf(x)=Wx+b。那么点到平面的距离可以表示为:dist...原创 2018-08-17 08:26:25 · 1137 阅读 · 0 评论