55、数值动态规划与经济模型误差分析

数值动态规划与经济模型误差分析

1. 引言

在经济研究中,数值方法对于评估非线性经济模型的预测至关重要。绝大多数经济模型没有解析解,研究人员只能依靠包含近似误差的数值算法。现代定量分析的核心假设是数值方法能很好地模拟原始模型的统计特征,但实际情况并非如此简单,研究人员常常难以控制数值误差的不良传播影响。

在静态经济中,通常容易界定误差的大小。但在无限期模型中,数值误差可能以意想不到的方式累积。在可以用收缩算子近似均衡的模型中,累积误差可以得到界定;但如果缺少收缩性质,最多只能在细化近似时确定数值解的渐近性质。

模型模拟在宏观经济学和其他学科中是常规操作,但关于能证明模拟矩收敛的大数定律,以及数值误差在这些模拟中的传播影响,还有很多需要研究。数值误差可能会使平稳解和基于模拟的估计中的参数估计产生偏差。因此,基于模拟的估计需要应对影响系统动态的参数值变化,这就需要能够对参数空间进行采样的快速准确算法。与传统的基于数据的估计相比,建立这些估计量的渐近性质(如一致性和正态性)要困难得多。

我们将围绕以下几个问题展开研究:
- 数值算法的收敛性质和能界定近似误差大小的准确性测试;
- 数值算法模拟矩的准确性以及能证明模型模拟合理性的大数定律;
- 校准和基于模拟的估计。

我们还会结合一些示例进行研究,重点关注在经济学和金融领域广泛应用的一大类动态一般均衡模型,并将分析分为最优和非最优经济。最优经济满足福利定理,其均衡可以通过相关优化问题计算,在常规条件下,这些均衡可以由连续(或可微)的政策函数定义的马尔可夫表示。非最优经济可能在自然状态空间上不存在马尔可夫均衡,或者这种均衡可能不连续。这些技术问题限制了假设连续或可微近似

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值