迭代器
要创建一个迭代器,需要定义一个类,并在该类中实现两个特殊方法:iter()和__next__()。
iter()方法返回迭代器对象本身。这个方法在迭代开始前被调用,用于准备迭代器的状态。
next()方法返回容器中的下一个元素。在每次调用__next__()方法时,迭代器会向前移动一步,并返回当前位置的元素。如果没有更多的元素可供迭代,next()方法应该引发StopIteration异常,以终止迭代。
class MyIterator:
def __init__(self, data):
self.data = data
self.index = 0
def __iter__(self):
return self
def __next__(self):
if self.index >= len(self.data):
raise StopIteration
value = self.data[self.index]
self.index += 1
return value
# 创建一个列表
my_list = [1, 2, 3, 4, 5]
# 创建迭代器对象
my_iterator = MyIterator(my_list)
# 使用迭代器遍历列表
for item in my_iterator:
print(item)
Python还提供了一些内置的可迭代对象和迭代器,如range()、list、tuple等
生成器
生成器(Generator)是一种特殊的迭代器,它可以通过函数来创建。生成器函数使用yield语句来产生(yield)一个值,而不是使用return语句。生成器可以逐步生成值,而不需要一次性生成所有的值,这样可以节省内存空间。
生成器的工作原理是:当生成器函数被调用时,它返回一个生成器对象,该对象可以用于迭代。每次迭代时,生成器函数会从上次离开的位置继续执行,直到遇到yield语句,将产生一个值,并暂停执行。当下一次迭代时,生成器会从上次暂停的位置继续执行,直到再次遇到yield语句或函数结束。
def fibonacci():
a, b = 0, 1
while True:
yield a
a, b = b, a + b
# 创建斐波那契数列的生成器对象
fib_generator = fibonacci()
# 使用生成器迭代生成数列的值
for i in range(10):
print(next(fib_generator))
在上述示例中,fibonacci()是一个生成器函数,通过使用yield语句来产生斐波那契数列的值。每次调用next()函数时,生成器会从上次暂停的位置继续执行,直到遇到yield语句,产生一个值并暂停执行,然后返回该值。在循环中通过多次调用next()函数,可以逐步生成斐波那契数列的值。