作为服务注册中心,Eureka比Zookeeper好在哪里
在做对比之前我们先来了解一下CAP
CAP
-
C:Consistency(一致性)
在分布式系统中的所有数据备份,在同一刻是否同样的值(等于所有节点访问同一份最新的数据副本)
-
A:Availability(高可用)
在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。(对数据更新具备高可用性)
-
P:Partition tolerance(分区容错性)
以实际效果而言,分区相当于对通信的时限要求。系统如果不能再时限内达成数据一致性,就意味着发生了分区的情况,必须就当前操作在C和A之间做出选择。
分布式系统不可避免的出现了多个系统通过网络协同工作的场景,节点之间难免会出现网络中断、网络延迟等现象,这种现象一旦出现就导致数据被分散在不同的节点上,这就是网络分区。
CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个哟安全,最多只能同时较好的满足两个。因此,根据CAP原理分布式系统分成了满足CA原则、满足CP原则和满足AP原则三大类:
-
CA-单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强。
-
CP-满足一致性,分区容忍性的系统,通常性能不是特别高
-
AP-满足可用性,分区容忍性的系统,通常可能对一致性的要求低一些
[外链图片转存失败(img-PiFml9uV-1567079528139)(CAP.png)]
CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容错性是我们必须需要实现的。所以我们只能在一致性和可用性之间进行权衡。
CA- 传统Oracle数据库
AP-大多数网站架构的选择
CP-Redis、Mongodb
Zookeeper和Eureka的区别
-
Zookeeper保证CP
当向注册中心查询服务列表时,我们可以容忍注册中心返回的是几分钟之前的注册信息,但不能结束服务直接down掉不能用。也就是说,服务注册功能对可用性的要求高与一致性。但是zk会出现这样一种情况,当master节点因为网络故障与其他节点失去联系是,剩节点会重新进行leader选举。问题在于,选举leader的时间太长,30~120s,且选举期间整个zk集群都是不可用的,这就导致在选举期间注册服务瘫痪。在云部署的环境下,因网络问题是的zk集群失去master节点是较大概率发生的事,虽然服务能够最终恢复,但是漫长的选举时间导致的注册长期不可用是不能容忍的。
-
Eureka保证AP
Eureka看明白了这一点,因此在设计时就优先保证可用性。Eureka各个节点都是平等的,几个节点挂掉不会影响正常节点的工作,剩余节点一人可以提供注册和查询服务。而Eureka的客户端在向某一个Eureka注册是发现连接失败,则会自动切换至其它节点,只要有一台Eureka还在,就能保证注册服务可用(保证可用性),只不过查到的信息可能不是最新的(不保证强一致性)。除此之外,Eureka还有一种自我保护机制,如果在15分钟内超过85%的节点都没有正常心跳,那么Eureka就认为客户端与注册中心查询了网络故障,此时会出现以下几种情况
- Eueka不再从注册列表中移除,因为长时间诶呦收到心跳而应该过去的服务
- Eueka仍然能接受新服务的注册和查询请求,但是不会被同步到其他节点上(即保证当前节点依然可用)
- 当网络稳定时,当前实例新的注册信息会被同步到其他节点中
==因此,Eureka可用很好的应对网络故障导致部分节点丢失联系的情况,而不会像zookeeper那样使整个注册服务瘫痪。