【题目描述】
一天Extense在森林里探险的时候不小心走入了一个迷宫,迷宫可以看成是由n×n的格点组成,每个格点只有2种状态,.
和#
,前者表示可以通行后者表示不能通行。同时当Extense处在某个格点时,他只能移动到东南西北(或者说上下左右)四个方向之一的相邻格点上,Extense想要从点A走到点B,问在不走出迷宫的情况下能不能办到。如果起点或者终点有一个不能通行(为#
),则看成无法办到。
【输入】
第1行是测试数据的组数k,后面跟着k组输入。每组测试数据的第11行是一个正整数n(1≤n≤100),表示迷宫的规模是n×n的。接下来是一个n×n的矩阵,矩阵中的元素为.
或者#
。再接下来一行是4个整数ha,la,hb,lb,描述A处在第ha行, 第la列,B处在第hb行, 第lb列。注意到ha,la,hb,lb全部是从0开始计数的。
【输出】
k行,每行输出对应一个输入。能办到则输出“YES”,否则输出“NO”。
【输入样例】
2
3
.##
..#
#..
0 0 2 2
5
.....
###.#
..#..
###..
...#.
0 0 4 0
【输出样例】
YES
NO
【解题思路】
-
读取输入:首先,读取测试数据的组数k,然后对每组数据,读取迷宫的规模n,接下来读取n行迷宫的布局,最后读取起点和终点的位置。
-
初始化迷宫:使用一个二维数组来表示迷宫,其中
.
表示可以通行的格点,#
表示不能通行的格点。 -
搜索算法:
- 深度优先搜索(DFS):从起点开始,探索所有可能的路径,直到找到终点或无路可走。需要注意的是,搜索过程中要避免重复访问同一个格点,以避免无限循环。
-
检查起点和终点:在开始搜索之前,检查起点和终点是否为通行的格点。如果起点或终点是
#
,则直接输出“NO”。 -
实施搜索:实施DFS搜索算法,如果能从起点走到终点,输出“YES”,否则输出“NO”。
【代码实现】
#include <iostream>
#include <string>
#include <cstring>
using namespace std;
int n, k; // 声明迷宫的大小和测试数据的组数的全局变量
string maze[110]; // 用于存储迷宫的字符串数组
bool vis[110][110]; // 访问标记数组,用于记录迷宫中已访问的格点
int dir[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; // 方向数组,表示向下、向上、向右、向左移动
// 检查给定位置是否在迷宫范围内的函数
bool in(int x, int y) {
return 0 <= x && x < n && 0 <= y && y < n;
}
// 深度优先搜索(DFS)函数,尝试从(x,y)移动到(ex,ey)
bool dfs(int x, int y, int ex, int ey) {
vis[x][y] = true; // 标记当前格点为已访问
if (x == ex && y == ey) { // 如果到达终点,返回true
return true;
}
// 遍历四个可能的移动方向
for (int i = 0; i < 4; i++) {
int tx = x + dir[i][0]; // 计算下一个格点的x坐标
int ty = y + dir[i][1]; // 计算下一个格点的y坐标
// 检查下一个格点是否在迷宫内、未被访问过、不是墙(#)
if (in(tx, ty) && !vis[tx][ty] && maze[tx][ty] != '#') {
// 递归调用dfs来访问下一个格点
if (dfs(tx, ty, ex, ey)) {
return true; // 如果找到一条路径,返回true
}
}
}
// 如果没有找到路径,返回false
return false;
}
int main() {
cin >> k; // 读取测试数据的组数
while (k--) { // 对于每组测试数据
cin >> n; // 读取迷宫的大小
for (int i = 0; i < n; i++) {
cin >> maze[i]; // 读取迷宫的每一行
}
int ha, la, hb, lb; // 声明起点和终点的行列坐标
cin >> ha >> la >> hb >> lb; // 读取起点和终点的行列坐标
// 如果起点或终点是墙(#),则输出"NO"
if (maze[ha][la] == '#' || maze[hb][lb] == '#') {
cout << "NO" << endl;
} else {
memset(vis, 0, sizeof(vis)); // 对于当前测试数据,重置访问标记数组
// 使用DFS检查是否存在从起点到终点的路径
if (dfs(ha, la, hb, lb)) {
cout << "YES" << endl; // 如果存在路径,输出"YES"
} else {
cout << "NO" << endl; // 如果不存在路径,输出"NO"
}
}
}
return 0;
}