【题目描述】
学校里有一个水房,水房里一共装有m个龙头可供同学们打开水,每个龙头每秒钟的供水量相等,均为1。
现在有n名同学准备接水,他们的初始接水顺序已经确定。将这些同学按接水顺序从1到n编号,i号同学的接水量为wi。接水开始时,1到m号同学各占一个水龙头,并同时打开水龙头接水。当其中某名同学j完成其接水量要求wj后,下一名排队等候接水的同学k马上接替j同学的位置开始接水。这个换人的过程是瞬间完成的,且没有任何水的浪费。即j同学第x秒结束时完成接水,则k同学第x+1 秒立刻开始接水。 若当前接水人数n’不足m,则只有n’个龙头供水,其它m-n’个龙头关闭。
现在给出n名同学的接水量,按照上述接水规则,问所有同学都接完水需要多少秒。
【输入】
第1行2个整数n和m,用一个空格隔开,分别表示接水人数和龙头个数。
第2 行n个整数 w1、w2、……、wn,每两个整数之间用一个空格隔开,wi表示 i 号同学的接水量。
【输出】
输出只有一行,1个整数,表示接水所需的总时间。
【输入样例】
5 3
4 4 1 2 1
【输出样例】
4
【提示】
样例输入#2:
8 4
23 71 87 32 70 93 80 76
样例输出#2:
163
提示:
输入输出样例1解释:
第1秒,3人接水。第1秒结束时,1、2、3号同学每人的已接水量为1,3号同学接完水,4号同学接替3号同学开始接水。
第2秒,3人接水。第2秒结束时,1、2号同学每人的已接水量为2,4号同学的已接水量为1。
第3秒,3人接水。第3秒结束时,1、2号同学每人的已接水量为3,4号同学的已接水量为2。4号同学接完水,5号同学接替4号同学开始接水。
第4秒,3人接水。第4秒结束时,1、2号同学每人的已接水量为4,5号同学的已接水量为1。1、2、5号同学接完水,即所有人完成接水。
总接水时间为4秒。
【问题简述】
这个问题要解决的是计算所有同学接完水需要的总时间。学校有一定数量的水龙头和一系列等待接水的同学,每个水龙头每秒可以供应固定量的水。同学们按顺序接水,每个人需要接固定量的水。当一个同学接完水后,下一个同学会立即接替他的位置开始接水,直到所有同学都接完水。需要确定完成这一过程需要多少秒。
【解题思路】
使用模拟方法解决这个问题时,我们直接按照题目描述的接水过程逐步进行,具体步骤如下:
1. 初始化
- 接水同学队列:首先,将所有同学的接水量按顺序存储在一个数组中,这个数组反映了每个同学需要接水的量。
- 时间计数器:设置一个变量来记录总时间,初始为0。
- 当前接水的同学:创建一个变量或数组来跟踪当前正在接水的同学的数量,这取决于水龙头的数量。
2. 模拟接水过程
- 循环进行接水过程,每一次循环代表一秒钟。
- 对于每个正在接水的同学,减少他们的接水量(因为每个龙头每秒的供水量相等,均为1)。
- 检查是否有同学在这一秒接完了水(即接水量变为0):
- 如果有同学接完水,且还有等待接水的同学,则让下一个同学立即接替接水,更新当前接水的同学数组或变量。
- 更新总时间计数器。
3. 结束条件
- 当所有同学的接水量都变为0时,结束模拟,此时的总时间计数器的值即为解答。
4. 输出结果
- 输出总时间计数器的值,即为所有同学都接完水需要的总秒数。
【代码实现】
#include <iostream>
#include <algorithm>
using namespace std;
const int MAXN = 10005; // 假设最多有10000个同学
int a[MAXN]; // 存储每个同学的接水量
int b[MAXN]; // 存储每个龙头的累计供水量
int main() {
int n, m, maxWater = 0;
cin >> n >> m; // 输入同学数量和水龙头数量
for (int i = 0; i < n; ++i) {
cin >> a[i]; // 输入每个同学的接水量
}
for (int i = 0; i < n; ++i) {
// 每次都找到累计供水量最小的龙头并更新其供水量
sort(b, b + m);
b[0] += a[i];
}
// 使用max函数找到所有龙头中累计供水量最大的值
for (int i = 0; i < m; ++i) {
maxWater = max(maxWater, b[i]);
}
cout << maxWater << endl; // 输出所有同学接完水的总时间
return 0;
}