介绍卷积的计算过程和相关代码

卷积与线性层的不同

在这里插入图片描述

  • 这是一个卷积大致的流程图,可以看到卷积是对图片在三维层面进行操作,而线性层是展平向量之后进行操作

这里需要注意两个点:

  1. 卷积运算过程
  2. 如何计算结果大小

卷积计算过程

卷积是对多通道进行操作的, 以彩色图片作为例子,每个图片的维度是 ( H ∗ W ∗ C ) (H*W*C) (HWC), C就是channel, 为3。计算时卷积核在每个channel滑动计算, 然后将得到的每一层的结果加起来, 就得到channel为1的特征图,即feature map。 那么就有疑问了,卷积不是能改变channel吗,这里把原来为3的变成1了,那如何变为channel为64, 128 这种呢?

  • 这是对一个channel进行操作的图示

在这里插入图片描述

  • 这是对3个channel进行操作的例子, stride设为1

这里再对一些细节进行阐述:

  1. 首先是卷积核, 它的维度是 H ∗ W ∗ C H*W*C HWC, 注意一般是方形, 也就是 H = W H=W H=W, 然后 C C C与图片通道数相同, 也就是每个通道配个核, 注意每个通道对应的核是不同的, 如上图所示.
  2. 然后是卷积核的偏置, 一整个卷积核对应一个偏置, 在这里是3个channel的卷积核对应一个偏置, 而不是一个channel对应一个

现在来解答之前的关于feature map的维度问题, 一个卷积核只会把channel变为1, 所以可以使用多个卷积核, 这样就可以变化channel了, 如下图:
在这里插入图片描述

feature map大小计算与pytorch参数

pytorch参数
  • torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1,padding=0, dilation=1, groups=1,bias=True, padding_mode=‘zeros’)

  • padding: 设置在所有边界增加 值为 0 的边距的大小(也就是在feature map 外围增加几圈 0 ),例如当 padding =1 的时候,如果原来大小为 3 × 3 ,那么之后的大小为 5 × 5 。即在外围加了一圈 0 。

  • dilation涉及到空洞卷积, 目前还没用到暂且不表

  • padding_mode: 可以分为四类:零填充,常数填充,镜像填充,重复填充。

卷积大小

n ∗ n n*n nn image
f ∗ f f*f ff fllter
padding p p p
stride s s s

公式 :
n + 2 p − f s + 1 \frac{n+2p-f}{s}+1 sn+2pf+1

池化

例程

以MNIST为例

# 来训练一下

import torch
from torchvision import datasets, transforms
import numpy
from torch.utils.data import DataLoader


train_data = datasets.MNIST(root='../dataset/mnist', train=True, transform=transforms.ToTensor(), download=True)
test_data = datasets.MNIST(root='../dataset/mnist', train=False, transform=transforms.ToTensor(), download=True)

train_loader = DataLoader(train_data, batch_size=64, shuffle=True, num_workers=2)
test_loader = DataLoader(test_data, batch_size=64  , shuffle=False, num_workers=2)

class CNN_Network(torch.nn.Module):
    def __init__(self):
        super(CNN_Network, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        # 这时候是batch, 10, 24, 24
        self.pooling = torch.nn.MaxPool2d(2)
        # 做一个就行, 这时候是batch, 10, 12, 12
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        # 这个输出是batch, 20, 8, 8
        self.fc = torch.nn.Linear(320, 10)
        self.relu = torch.nn.ReLU()

    def forward(self, x):
        batch_size = x.shape[0]

        x = self.relu(self.conv1(x))
        x = self.pooling(x)
        x = self.relu(self.conv2(x))
        x = self.pooling(x)
        x = x.view(batch_size, -1)  # 展平为了fc做准备
        # 在这里是展成batch,320的状态
        x = self.fc(x)
        return x  # 因为用交叉熵损失所以最后一层不用激活
model = CNN_Network()
criterion = torch.nn.CrossEntropyLoss(reduction='mean')  # 这是取平均值的用法
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

def train(epoch):
    running_loss = 0
    for index, data in enumerate(train_loader):
        images, labels = data
        y_pred = model(images)
        optimizer.zero_grad()
        loss = criterion(y_pred, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if index % 300 == 299:
            print('epoch:', epoch+1, 'index:', index+1, 'loss:', running_loss/300)
            running_loss = 0

def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            output = model(images)
            _, y_pred = torch.max(output, dim=1) # 因为max返回的是两个数,第一个是值,第二个是索引值. 看的是列dim=1
            correct += (y_pred == labels).sum().item()
            total += labels.size(0)
        print('accuracy:', correct/total)


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

    print(model())
		
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

live_for_myself

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值