
Computer Vision
-
转载
机器学习中的Embedding
来自知乎的一个解释:(版权归原作者所有,仅供学习,禁止商用) https://zhuanlan.zhihu.com/p/46016518 解释还是有点感觉迷糊,数学解释: Embedding在数学上表示一个maping, f: X -> Y, 也就是一个function,其中该函数是injective(就是我们所说的单射函数,每个Y只有唯一的X对应,反之亦然)和st...2019-10-17 15:18:03 阅读数 10 评论数 0 -
转载
multidimensional scaling
一般想到降维,就自然想到一种方法PCA,其实还有一种方法MDS(multidimensional scaling),可以获得样本间的相似性的空间表达。 先说说这两种方法的相似处,PCA是把观察的数据用较少的维数来表达,这点上两种方法的相似的;两种方法的不太之处在于,MDS利用的是成对样本间相似性,目的是利用这个信息去构建合适的低维空间,是的样本在此空间的距离和在高维空间中的样本间的相似性尽可能的2015-09-15 11:59:40 阅读数 1343 评论数 0 -
原创
Bag of words and Bag of features
关于BOW没什么好点资源,百度到的都是一些不详细的。 碰巧看到了一个公开课,http://crcv.ucf.edu/courses/CAP5415/Fall2012/index.php里面有视频和PDF 可能需要翻墙才能看到视频和pdf,这里我就把原资源截下来放里面了。版权归原作者所有。 ================================================2015-09-17 09:45:25 阅读数 3699 评论数 4 -
原创
Locality-constrained Linear Coding for Image Classification(阅读)
通熟易懂的图片,来自余凯。 经过前面的BoW、BoF、SPM、ScSPM的学习,终于可以大概把CNN网络的结构稍微理解一下了: VQ啊,SC啊相当于CNN中的coding部分,SPM相当于pooling部分。 BoW+SPM的图 下面是CNN等效对比图: 然后接下来就是Spare Coding取代,它能很好模拟人大脑的信号处理过程,也求解问题能够用LASSO解决。2015-10-07 18:59:30 阅读数 2001 评论数 0 -
原创
caffe提取已训练好模型的特征
按照caffe官网教程: 1、创建一个临时文件夹 $ mkdir examples/_temp 2、我们为三张图片添加一个文件列表 find `pwd`/examples/images -type f -exec echo {} \; > examples/_temp/temp.txt2015-11-26 12:29:44 阅读数 2829 评论数 1 -
转载
Deep Learning方向的paper
个人阅读的Deep Learning方向的paper整理,分了几部分吧,但有些部分是有交叉或者内容重叠,也不必纠结于这属于DNN还是CNN之类,个人只是大致分了个类。目前只整理了部分,剩余部分还会持续更新。 一 RNN 1 Recurrent neural network based language model RNN用在语言模型上的开山之作2016-03-06 14:47:05 阅读数 2353 评论数 0 -
原创
GoogleNet的Inception_v1、Inception_v2、Inception_v3、Inception_v4(整理)
来自caffeCN的一个简要的总结(http://caffecn.cn/?/question/255): 先上Paper列表: [v1] Going Deeper with Convolutions, 6.67% test error, http://arxiv.org/abs/1409.4842[v2] Batch Normalization: Accelerating Deep Net2016-10-11 13:16:30 阅读数 19942 评论数 2 -
原创
Fast-rcnn的caffe代码结构描述
首先要学会如何调用python层在protxt文件中,调用python层后面补上。 下面是Fast-rcnn的官网slide描述:2016-10-12 12:09:32 阅读数 2728 评论数 0 -
转载
什么是end-to-end神经网络?
来源:知乎 著作权归作者所有。 讨论: 张旭---------------------------------> 端到端指的是输入是原始数据,输出是最后的结果,原来输入端不是直接的原始数据,而是在原始数据中提取的特征,这一点在图像问题上尤为突出,因为图像像素数太多,数据维度高,会产生维度灾难,所以原来一个思路是手工提取图像的一些关键特征,这实际就是就一个降维的过程。 那么问题来了2016-11-03 11:03:53 阅读数 22102 评论数 0 -
转载
Caffe-Python接口常用API参考
本文整理了pycaffe中常用的API Packages导入 1 2 3 import caffe from caffe import layers as L from caffe import params as P Layers定义 Data层定义 lmdb/leveldb Data层定义 1 2 3 4 5 6 72016-11-08 15:27:55 阅读数 20432 评论数 7 -
转载
计算机视觉的300多项优质资源
A curated collection of 300+ awesome computer vision resources including books, courses, papers, tutorials, software and more. Due to the size of this list, it can be hard to keep up with broken2016-11-29 14:16:22 阅读数 2316 评论数 0 -
原创
nvidia显卡驱动卸载和卸载后的问题
由于装了nvidia显卡驱动后开机一直处于循环登录界面,密码输入正确也是进不去,然后就决定卸载nvidia显卡驱动。 首先是在能使用tty1登录的情况下,使用 $ sudo apt-get autoremove --purge nvidia-*$ sudo reboot 然后就发现开机能进去desktop了,很开心,结果就是切换到tty模式下是黑屏,其实不是黑屏,是由于卸载了nv2015-07-10 13:26:35 阅读数 10585 评论数 1 -
转载
极深网络(ResNet/DenseNet): Skip Connection为何有效及其它
转自:http://blog.csdn.net/malefactor/article/details/67637785 感谢张俊林通俗的分析。 ================================================================================================================ Residual N2017-03-29 09:52:47 阅读数 5014 评论数 0 -
转载
LBP+DLBP+STLBP+VLBP
纹理是物体表面的固有特征之一,可认为是灰度(颜色)在空间以一定的形式变化而产生的图案(模式). LBP(Local Binary Pattern, 局部二值模式)是一种用来描述图像局部纹理特征的算子;它的作用是进行特征提取,提取图像的局部纹理特征. 原始的LBP算子定义为在3*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较, 若周围像素值大于2015-09-15 12:27:46 阅读数 2552 评论数 1 -
转载
Latent Semantic Analysis
潜语义分析LSA介绍 Latent Semantic Analysis (LSA), also known as Latent Semantic Indexing (LSI) literally means analyzing documents to find the underlying meaning or concepts of those documents. If each2015-09-15 10:53:25 阅读数 1127 评论数 0 -
转载
Principal Components Analysis
以前对PCA算法有过一段时间的研究,但没整理成文章,最近项目又打算用到PCA算法,故趁热打铁整理下PCA算法的知识。本文观点旨在抛砖引玉,不是权威,更不能尽信,只是本人的一点体会。 主成分分析(PCA)是多元统计分析中用来分析数据的一种方法,它是用一种较少数量的特征对样本进行描述以达到降低特征空间维数的方法,它的本质实际上是K-L变换。PCA方法最著名的应用应该是在人脸识别中特征提取及数据维2015-09-15 09:25:27 阅读数 1466 评论数 0 -
原创
特征提取-----HOG
一、HOG特征简介 来源于《Histograms of Oriented Gradients for Human Detection》 《Finding People in Images and Videos》(PhD Thesis) (较为详细) 二、分割图像 HOG是一个局部特征,如果对一大幅图片直接提取特征,是得不到好的效果的。从信息论角度讲,例如一幅640*480的图像,大概有302015-05-12 20:52:07 阅读数 24329 评论数 7 -
原创
低层次特征提取(一)------------边缘检测
低层次特征是不需要任何形状/空间关系的信息就可以从图像中自动提取的基本特征。所有低层次方法都可以应用于高层次特征提取,从而在图像中找到形状。第一种低层次特征,称之"edge detection"。它的目的要是要制作一个线图。一阶检测算子相于一阶微分法,二阶边缘检测算子相当于高一阶微分处理。 边缘检测:在视觉计算理论框架中,抽取二维图像上的边缘、角点、纹理等基本特征,是整个系统框架中的2015-05-12 12:47:09 阅读数 33256 评论数 0 -
原创
评价曲线------------ROC和PR
1、百科:ROC曲线指受试者工作特征曲线 / 接收器操作特性曲线(receiver operating characteristic curve), 是反映敏感性和特异性连续变量的综合指标,是用构图法揭示敏感性和特异性的相互关系,它通过将连续变量设定出多个不同的临界值,从而计算出一系列敏感性和特异性,再以敏感性为纵坐标、(1-特异性)为横坐标绘制成曲线,曲线下面积越大,诊断准确性越高。在ROC曲线2015-05-17 12:30:55 阅读数 10827 评论数 0 -
原创
图片保存和数据读入保存方法
1、image可以获取固定区域大小的图片 img(x1:x2,y1:y2,:) 实现: %% 生成随机块代样本 clc;clear all;close all; addpath('E:\1\'); image_folder='E:\1\'; addpath(image_folder); file_ext = '.png'; name_folder=image_folder; %选择文件2015-05-17 14:42:32 阅读数 4447 评论数 1 -
原创
SIFT的思路整理笔记
尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种计算机视觉的算法用来detect与describe local features,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe在1999年所发表,2004年完善总结。 Applications include object recognition,2015-06-24 14:02:28 阅读数 1583 评论数 0 -
原创
Sparsity and Some Basics of L1 Regularization (学习Free Mind知识整理)
f(x)=∑j=1pwjxj=wTx阅读http://freemind.pluskid.org/machine-learning/sparsity-and-some-basics-of-l1-regularization/文章中的一些知识整理: ============================================================== “因为如果用上所2015-08-22 12:50:42 阅读数 499 评论数 0 -
原创
Hierarchical Clustering(学习Free Mind知识整理)和Hungarian Algorithm
由上一篇K-medoids算法学完后,搜索到Hierarchical Clustering算法和上篇Free Mind的K-medoid讨论提到的Hungarian Algorithm算法,做一个简单学习。 这篇文章的学习思路还是按照http://blog.pluskid.org/?p=407学习一下。 =============================================2015-08-24 14:28:02 阅读数 1227 评论数 0 -
原创
Discriminative Modeling vs Generative Modeling(学习Free Mind知识整理)
阅读http://freemind.pluskid.org/machine-learning/discriminative-modeling-vs-generative-modeling/文章中的一些知识整理: ================================================================= Discriminative Model维基2015-08-22 16:45:57 阅读数 920 评论数 0 -
原创
k-medoids(学习Free Mind知识整理)
看到这里的k-medoids联想到聚类方法有哪些? http://blog.chinaunix.net/uid-10289334-id-3758310.html 这k-medoids和k-means两者对比一下图:2015-08-24 13:00:55 阅读数 1637 评论数 0 -
原创
Spectral Clustering(学习Free Mind知识整理)
阅读 http://blog.pluskid.org/?p=287文章中的一些知识整理:本文学习的知识点谱聚类。2015-08-27 17:54:32 阅读数 1864 评论数 0 -
原创
Regularized Gaussian Covariance Estimation(学习Free Mind知识整理)
阅读http://freemind.pluskid.org/machine-learning/regularized-gaussian-covariance-estimation/文章中的一些知识整理: ==================================================================== 非常感谢Free Mind能够这么耐心的分析解2015-08-27 20:17:33 阅读数 735 评论数 0 -
原创
Gaussian Mixture Model(学习Free Mind知识整理)
这篇关于Gaussian Mixture Model(GMM)的文章:http://blog.pluskid.org/?p=39 http://blog.csdn.net/abcjennifer/article/details/8198352 =============================================================== “高斯分布2015-08-27 16:30:07 阅读数 784 评论数 0 -
原创
Vector Quantization(学习Free Mind知识整理)
阅读http://blog.pluskid.org/?p=57文章中的一些知识整理: ===================================================================== 矢量量化(Vector Quantization)其实也就是逼近,VQ 是将一个向量空间中的点用其中的一个有限子集来进行编码的过程。Vector Quantization2015-08-27 19:22:26 阅读数 1575 评论数 2 -
原创
形态学操作
关于形态学的实验需要对二值图像进行减噪处理,图像形态学中的腐蚀和膨胀能很好的解决此问题。如果在腐蚀和膨胀操作前,对灰度图像做一次滤波,减噪效果将更明显。 腐蚀的具体操作是:用一个结构元素(一般是3×3的大小)扫描图像中的每一个像素,用结构元素中的每一个像素与其覆盖的像素做“与”操作,如果都为1,则该像素为1,否则为0。膨胀的具体操作是:用一个结构元素(一般是3×3的大小)扫描图像中的每一个像素,2015-05-10 13:45:36 阅读数 9807 评论数 0