- 博客(5)
- 收藏
- 关注
原创 图神经网络基础入门学习路线(上)
这次**梳理的是仅涉及从静态同质图网络到静态的异质图神经网络的节点表征学习,并且只是提取其空间结构信息,图中节点是不包含属性特征的。**有属性的静态图神经网络准备到基础入门(下)中去梳理。本次梳理涵盖的模型有**1.word2vec 2.deepwalk 3.node2vec 4. LINE 5.SDNE 6.metapath2vec 7.Trans系列(TransE、TransH、TransR、TransD)**
2025-04-03 21:56:17
878
1
原创 transformer各模块基础组件复现
本文是博主自己练习复现transform各个基础模块时根据自己已有的认识梳理总结的而成,代码部分部分主要参考https://nlp.seas.harvard.edu/annotated-transformer/#inference 一文,博主在手敲代码复现过程中加入了一些自己的思考,对其中一些代码感到不理解的在互联网上查阅了资料进行了回答,可以看作是一个易食用的中文版本。所使用的资料均可以公开访问并附上了出处。
2025-03-15 13:34:58
1033
原创 BN与LN对比及对规范化结果进行手工验算
这篇blog可作为其他学习BN与LN的一个补充,我在学习过程的看过很多blog都是在讲BN与LN的原理,讲的都很好,但很多还是没有去展示具体的计算步骤。造成一个结果就是我只要为什么要用BN或者LN以及用代码去实现这个操作,但我不清楚计算过程,用起代码来心里总没底。有少数blog也展示了计算步骤,但给出数据集只是2维数据集感觉还是差点意思,所以我自己构建了一个3维的数据(文本)并在同一个数据集上分别进行了bn和ln的编程实现和手工验算进行对比。我尽可能的详细的写清楚了具体手算的步骤(应该算目前能看到最详细的版
2025-03-12 18:16:16
822
原创 DEA(大样本)+机器学习——越南中小微企业绩效揭秘
DEA+机器学习融合来自法国、越南和新西兰的跨国研究团队,为中小微企业绩效评估开辟了新路径。他们创造性地将数据包络分析与机器学习相结合,开发出一种名为**CSW-RA-DEA**的混合方法,成功解决了两大技术痛点:1. **共同权重难题** 通过回归分析(RA)确定通用权重(CSW),确保所有企业在同一基准下比较,避免了传统DEA因个体权重差异导致的排序混乱。2. **大数据处理瓶颈** 采用LASSO回归、随机森林等机器学习算法,不仅提升了预测精度,更在样本外测试中展现出惊人的潜力
2025-03-11 13:06:20
772
原创 CNN-LSTM与ConvLSTM的区别
CNN-LSTM与ConvLSTM的区别摘要在时间序列预测、视频分析和气象模拟等领域,是核心挑战。传统LSTM擅长时序建模,但难以捕捉空间特征;传统CNN擅长空间特征提取,却对时序动态不敏感。和。这两种架构看似相似,实则代表了两种截然不同的时空建模哲学。本文将从原理、结构、性能和应用场景深入解析二者的区别。本文侧重在讲解区分,理解构建convLSTM的思想,具体构建的代码见参考文献。
2025-03-08 14:16:34
1230
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人