codeforces-919A Supermarket

A. Supermarket
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

We often go to supermarkets to buy some fruits or vegetables, and on the tag there prints the price for a kilo. But in some supermarkets, when asked how much the items are, the clerk will say that a yuan for b kilos (You don't need to care about what "yuan" is), the same as a / b yuan for a kilo.

Now imagine you'd like to buy m kilos of apples. You've asked n supermarkets and got the prices. Find the minimum cost for those apples.

You can assume that there are enough apples in all supermarkets.

Input

The first line contains two positive integers n and m (1 ≤ n ≤ 5 000, 1 ≤ m ≤ 100), denoting that there are n supermarkets and you want to buy m kilos of apples.

The following n lines describe the information of the supermarkets. Each line contains two positive integers a, b (1 ≤ a, b ≤ 100), denoting that in this supermarket, you are supposed to pay a yuan for b kilos of apples.

Output

The only line, denoting the minimum cost for m kilos of apples. Please make sure that the absolute or relative error between your answer and the correct answer won't exceed 10 - 6.

Formally, let your answer be x, and the jury's answer be y. Your answer is considered correct if .

Examples
Input
Copy
3 5
1 2
3 4
1 3
Output
Copy
1.66666667
Input
Copy
2 1
99 100
98 99
Output
Copy
0.98989899
Note

In the first sample, you are supposed to buy 5 kilos of apples in supermarket 3. The cost is 5 / 3 yuan.

In the second sample, you are supposed to buy 1 kilo of apples in supermarket 2. The cost is 98 / 99 yuan.

#include <iostream>
#include <cstring>
#include <iomanip>
using namespace std;
class decimal{
public :
    int up,down;
    decimal(){};
    decimal(int,int);
    friend bool operator>(decimal,decimal);
};
decimal::decimal(int x,int y){
    up=x;
    down=y;
}
bool operator>(decimal x,decimal y){
    return x.up*y.down>x.down*y.up;
}
int main(){
    int n,m;
    while(cin>>n>>m){
        decimal now,minn(101,1);
        for(int i=0;i<n;i++){
            cin>>now.up>>now.down;
            if(minn>now){
                minn=now;
            }
        }
        cout<<fixed<<setprecision(8)<<m*minn.up*1.0/minn.down<<endl;
    }
    return 0;
}

阅读更多

Supermarket

09-10

A supermarket has a set Prod of products on sale. It earns a profit px for each product x in Prod sold by a deadline dx that is measured as an integral number of time units starting from the moment the sale begins. Each product takes precisely one unit of time for being sold. A selling schedule is an ordered subset of products Sell (subset of Prod) such that the selling of each product x in Sell, according to the ordering of Sell, completes before the deadline dx or just when dx expires. The profit of the selling schedule is Profit(Sell)=sum of px (x in Sell). An optimal selling schedule is a schedule with a maximum profit.nnFor example, consider the products Prod=a,b,c,d with (pa,da)=(50,2), (pb,db)=(10,1), (pc,dc)=(20,2), and (pd,dd)=(30,1). The possible selling schedules are listed in table 1. For instance, the schedule Sell=d,a shows that the selling of product d starts at time 0 and ends at time 1, while the selling of product a starts at time 1 and ends at time 2. Each of these products is sold by its deadline. Sell is the optimal schedule and its profit is 80.nnschedulenprofitnan50nbn10ncn20ndn30nb,an60na,cn70nc,an70nb,cn30nd,an80nd,cn50nWrite a program that reads sets of products from an input text file and computes the profit of an optimal selling schedule for each set of products.nnA set of products starts with an integer 0 <= n <= 10000, which is the number of products in the set, and continues with n pairs pi di of integers, 1 <= pi <= 10000 and 1 <= di <= 10000, that designate the profit and the selling deadline of the i-th product. White spaces can occur freely in input. Input data terminate with an end of file and are guaranteed correct.nnFor each set of products, the program prints on the standard output the profit of an optimal selling schedule for the set. Each result is printed from the beginning of a separate line.nnThe sample input in contains two product sets. The first set encodes the products from table 1. The second set is for 7 products. The profit of an optimal schedule for these products is 185.nnnSample Inputnn4 50 2 10 1 20 2 30 1nn7 20 1 2 1 10 3 100 2 8 2n5 20 50 10nnSample Outputnn80n185

Supermarket 区间问题并查集

11-16

DescriptionnnA supermarket has a set Prod of products on sale. It earns a profit px for each product x∈Prod sold by a deadline dx that is measured as an integral number of time units starting from the moment the sale begins. Each product takes precisely one unit of time for being sold. A selling schedule is an ordered subset of products Sell ≤ Prod such that the selling of each product x∈Sell, according to the ordering of Sell, completes before the deadline dx or just when dx expires. The profit of the selling schedule is Profit(Sell)=Σ x∈Sellpx. An optimal selling schedule is a schedule with a maximum profit. nFor example, consider the products Prod=a,b,c,d with (pa,da)=(50,2), (pb,db)=(10,1), (pc,dc)=(20,2), and (pd,dd)=(30,1). The possible selling schedules are listed in table 1. For instance, the schedule Sell=d,a shows that the selling of product d starts at time 0 and ends at time 1, while the selling of product a starts at time 1 and ends at time 2. Each of these products is sold by its deadline. Sell is the optimal schedule and its profit is 80. nnnWrite a program that reads sets of products from an input text file and computes the profit of an optimal selling schedule for each set of products. nInputnnA set of products starts with an integer 0 <= n <= 10000, which is the number of products in the set, and continues with n pairs pi di of integers, 1 <= pi <= 10000 and 1 <= di <= 10000, that designate the profit and the selling deadline of the i-th product. White spaces can occur freely in input. Input data terminate with an end of file and are guaranteed correct.nOutputnnFor each set of products, the program prints on the standard output the profit of an optimal selling schedule for the set. Each result is printed from the beginning of a separate line.nSample Inputnn4 50 2 10 1 20 2 30 1nn7 20 1 2 1 10 3 100 2 8 2n 5 20 50 10nSample Outputnn80n185

没有更多推荐了,返回首页