图像处理
文章平均质量分 78
lanling1996
这个作者很懒,什么都没留下…
展开
-
单应性矩阵的应用于理论推导
单应性矩阵的理解及求解 1. 齐次坐标(Homogeneous Coordinate) 一幅2D图像上的非齐次坐标为(x,y),而齐次坐标为(x,y,1),也可以写成(x/z,y/z,1)或(x,y,z)。齐次坐标有很多好处,比如可以很清楚的确定一个点在不在直线上: T(x)*I=0, T表示转置矩阵; 还可以描述无穷远点:(x,y,0); 还可以把平移和旋转写到一个矩阵里(也有不愿意这么干的,摄影测量里...转载 2021-01-14 13:56:43 · 424 阅读 · 1 评论 -
图像处理——梯度直方图HOG
图像处理之特征提取:HOG特征简单梳理 HOG方向梯度直方图,这里分解为方向梯度与直方图。 一、方向梯度 梯度:在向量微积分中,标量...转载 2021-01-13 20:37:08 · 3400 阅读 · 3 评论 -
图像处理——高斯拉普拉斯LOG(2)
首发于(ML/DL/CV)相关细小知识点梳理写文章高斯拉普拉斯算子(Laplacian of Gaussian, LoG)saulzhang致知计划科学季 · 已瓜分 10 亿流量49 人赞同了该文章一、简要描述:拉普拉斯算子是图像二阶空间导数的二维各向同性测度。拉普拉斯算子可以突出图像中强度发生快速变化的区域,因此常用在边缘检测任务当中。在进行Laplacian操作之前通常需要先用高斯平滑滤波器对图像进行平滑处理,以降低Laplacian操作对于噪声的敏感性。该操作通常是输入一张灰度图,经过处理之后输出一转载 2021-01-10 16:49:25 · 5645 阅读 · 0 评论 -
高斯拉普拉斯算子LOG
Laplacian(拉普拉斯)是对于一张图像的二阶空间导数上各向同性的测量。一张图像的Laplacian会显示出intensity(亮度) 剧烈变化的区域,所以经常用作边缘检测。 一幅图像的拉普拉斯变换可以用下面的式子表示: I(x,y)代表带有亮度信息的图像。 因为输入的图像都是用离散的像素表示的,例如256*256,所以我们需要找到离散的卷积核来近似laplacian变换。两个最常用的小卷核是 &...转载 2021-01-10 16:23:23 · 1881 阅读 · 0 评论 -
图像处理中的高斯滤波器
1 一维高斯分布 1.1 一维高斯分布的定义 若连续型随机变量X的概率密度为:  ...转载 2021-01-10 12:08:45 · 2460 阅读 · 0 评论 -
图像处理——Harris角点检测算法原理
目录一 特征检测算法二 特征定义三 Harris检测角点特征 四 Harris检测原理1、灰度变化描述2、E(u,v)E(u,v)值,一般取0.04~0.06;borderType:像素插值方法;函数 cornerHarris 对输入图像进行 Harris 边界检测。输出是一幅浮点值图像,大小与输入图像大小相同,浮点值越高,表明越可能是特征角点(我们可以对图像进行阈值化)。# -*- coding: utf-8 -*-"""Created on Mon Aug 20 20:17:34转载 2021-01-10 12:35:54 · 1547 阅读 · 0 评论 -
图像处理——Canny边缘检测算法原理详解
图像边缘信息主要集中在高频段,通常说图像锐化或检测边缘,实质就是高频滤波。我们知道微分运算是求信号的变化率,具有加强高频分量的作用。在空域运算中来说,对图像的锐化就是计算微分。由于数字图像的离散信号,微分运算就变成计算差分或梯度。图像处理中有多种边缘检测(梯度)算子,常用的包括普通一阶差分,Robert算子(交叉差分),Sobel算子等等,是基于寻找梯度强度。拉普拉斯算子(二阶差分)是基于过零点检测。通过计算梯度,设置阀值,得到边缘图像。Canny边缘检测算子是一种多级检测算法。1986...转载 2021-01-10 12:33:37 · 12222 阅读 · 0 评论