matlab2019a中Deep Learning Toolbox初步介绍(Deep Learning Toolbox系列篇1)

至19年4月份,matlab2019a已正式上线。我们在matlab2019a命令框输入help之后,可以找到Deep Learning Toolbox工具模块,从官方帮助文档中可知,如下图所示,matlab2016a开使支持Deep Learning Toolbox。

目前,在matlab2019a中,深度学习的基本使用模块已经相对完善,并且支持逐层拖拽的simulink型的架构设计方式。

1. Deep Learning Toolbox 产品描述

Deep Learning Toolbox™ 提供了一个用于通过算法、预训练模型和应用程序来设计和实现深度神经网络的框架。您可以使用卷积神经网络(ConvNet、CNN)和长短期记忆 (LSTM) 网络对图像、时序和文本数据执行分类和回归。应用程序和绘图可帮助您可视化激活值、编辑网络架构和监控训练进度。

对于小型训练集,您可以使用预训练深度网络模型(包括 SqueezeNet、Inception-v3、ResNet-101、GoogLeNet 和 VGG-19)以及从 TensorFlow®-Keras 和 Caffe 导入的模型执行迁移学习。

要加速对大型数据集的训练,您可以将计算和数据分布到桌面计算机上的多核处理器和 GPU 中(使用 Parallel Computing Toolbox™),或者扩展到群集和云,包括 Amazon EC2® P2、P3 和 G3 GPU 实例(使用 MATLAB® Distributed Computing Server™)。

1.1 关键特征

1)卷积神经网络(CNN),长短期记忆(LSTM)和有向无环图(DAG)网络拓扑
2)使用从TensorFlow-Keras和Caffe导入的预训练模型和模型进行传递学习
3)导入和导出ONNX™模型,以实现与其他深度学习框架的互操作性
4)用于图形设计和分析网络架构的应用程序
5)桌面,群集和云(包括Amazon EC2 P2,P3和G3 GPU实例)上的CPU和GPU的培训和推理
6)用于浅层网络的无监督学习算法,包括自组织映射和竞争层
7)用于浅层网络的监督学习算法,包括多层,径向基础,学习矢量量化(LVQ),时间延迟和非线性自回归(NARX)

 

2. 系统及工具建议

上述是使用Deep Learning Toolbox建议的环境要求及工具包使用情况。翻译成中文是:

1)需要MATLAB
2)建议使用并行计算工具箱,这是GPU支持所需的图像处理工具箱
3)计算机视觉工具箱推荐
4)GPU编码器推荐
5)MATLAB编码器推荐
6)Simulink推荐
7)建议使用强化学习工具箱

 

前面这些都是matlab的官方废话了,直接来看看到底提供了什么便捷的深度学习模块和使用技巧吧!

3. 看看新鲜的。

在matlab命令框输入

deepNetworkDesigner

 可以呼出类似simulink的拖拽式的深度学习架构设计页面;如下图:

另一方面,matlab还可以利用第三方已经实现好的一些模型处理一般场景。比如用训练好的googLeNet来识别图片,或识别摄像头里的动态场景。 

 参考文献

 

【1】matlab2019a help帮助文档

【2】系统要求: https://ww2.mathworks.cn/support/requirements/product-requirements-platform-availability-list.html

 

深度学习工具包 Deprecation notice. ----- This toolbox is outdated and no longer maintained. There are much better tools available for deep learning than this toolbox, e.g. [Theano](http://deeplearning.net/software/theano/), [torch](http://torch.ch/) or [tensorflow](http://www.tensorflow.org/) I would suggest you use one of the tools mentioned above rather than use this toolbox. Best, Rasmus. DeepLearnToolbox ================ A Matlab toolbox for Deep Learning. Deep Learning is a new subfield of machine learning that focuses on learning deep hierarchical models of data. It is inspired by the human brain's apparent deep (layered, hierarchical) architecture. A good overview of the theory of Deep Learning theory is [Learning Deep Architectures for AI](http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf) For a more informal introduction, see the following videos by Geoffrey Hinton and Andrew Ng. * [The Next Generation of Neural Networks](http://www.youtube.com/watch?v=AyzOUbkUf3M) (Hinton, 2007) * [Recent Developments in Deep Learning](http://www.youtube.com/watch?v=VdIURAu1-aU) (Hinton, 2010) * [Unsupervised Feature Learning and Deep Learning](http://www.youtube.com/watch?v=ZmNOAtZIgIk) (Ng, 2011) If you use this toolbox in your research please cite [Prediction as a candidate for learning deep hierarchical models of data](http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6284) ``` @MASTERSTHESIS\{IMM2012-06284, author = "R. B. Palm", title = "Prediction as a candidate for learning deep hierarchical models of data", year = "2012", } ``` Contact: rasmusbergpalm at gmail dot com Directories included in the toolbox ----------------------------------- `NN/` - A library for Feedforward Backpropagation Neural Networks `CNN/` - A library for Convolutional Neural Networks `DBN/` - A library for Deep Belief Networks `SAE/` - A library for Stacked Auto-Encoders `CAE/` - A library for Convolutional Auto-Encoders `util/` - Utility functions used by the libraries `data/` - Data used by the examples `tests/` - unit tests to verify toolbox is working For references on each library check REFS.md Setup ----- 1. Download. 2. addpath(genpath('DeepLearnToolbox')); Example: Deep Belief Network --------------------- ```matlab function test_example_DBN load mnist_uint8; train_x = double(train_x) / 255; test_x = double(test_x) / 255; train_y = double(train_y); test_y = double(test_y); %% ex1 train a 100 hidden unit RBM and visualize its weights rand('state',0) dbn.sizes = [100]; opts.numepochs = 1; opts.batchsize = 100; opts.momentum = 0; opts.alpha = 1; dbn = dbnsetup(dbn, train_x, opts); dbn = dbntrain(dbn, train_x, opts); figure; visualize(dbn.rbm{1}.W'); % Visualize the RBM weights %% ex2 train a 100-100 hidden unit DBN and use its weights to initialize a NN rand('state',0) %train dbn dbn.sizes = [100 100]; opts.numepochs = 1; opts.batchsize = 100; opts.momentum = 0; opts.alpha = 1; dbn = dbnsetup(dbn, train_x, opts); dbn = dbntrain(dbn, train_x, opts); %unfold dbn to nn nn = dbnunfoldtonn(dbn, 10); nn.activation_function = 'sigm'; %train nn opts.numepochs = 1; opts.batchsize = 100; nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.10, 'Too big error'); ``` Example: Stacked Auto-Encoders --------------------- ```matlab function test_example_SAE load mnist_uint8; train_x = double(train_x)/255; test_x = double(test_x)/255; train_y = double(train_y); test_y = double(test_y); %% ex1 train a 100 hidden unit SDAE and use it to initialize a FFNN % Setup and train a stacked denoising autoencoder (SDAE) rand('state',0) sae = saesetup([784 100]); sae.ae{1}.activation_function = 'sigm'; sae.ae{1}.learningRate = 1; sae.ae{1}.inputZeroMaskedFraction = 0.5; opts.numepochs = 1; opts.batchsize = 100; sae = saetrain(sae, train_x, opts); visualize(sae.ae{1}.W{1}(:,2:end)') % Use the SDAE to initialize a FFNN nn = nnsetup([784 100 10]); nn.activation_function = 'sigm'; nn.learningRate = 1; nn.W{1} = sae.ae{1}.W{1}; % Train the FFNN opts.numepochs = 1; opts.batchsize = 100; nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.16, 'Too big error'); ``` Example: Convolutional Neural Nets --------------------- ```matlab function test_example_CNN load mnist_uint8; train_x = double(reshape(train_x',28,28,60000))/255; test_x = double(reshape(test_x',28,28,10000))/255; train_y = double(train_y'); test_y = double(test_y'); %% ex1 Train a 6c-2s-12c-2s Convolutional neural network %will run 1 epoch in about 200 second and get around 11% error. %With 100 epochs you'll get around 1.2% error rand('state',0) cnn.layers = { struct('type', 'i') %input layer struct('type', 'c', 'outputmaps', 6, 'kernelsize', 5) %convolution layer struct('type', 's', 'scale', 2) %sub sampling layer struct('type', 'c', 'outputmaps', 12, 'kernelsize', 5) %convolution layer struct('type', 's', 'scale', 2) %subsampling layer }; cnn = cnnsetup(cnn, train_x, train_y); opts.alpha = 1; opts.batchsize = 50; opts.numepochs = 1; cnn = cnntrain(cnn, train_x, train_y, opts); [er, bad] = cnntest(cnn, test_x, test_y); %plot mean squared error figure; plot(cnn.rL); assert(er<0.12, 'Too big error'); ``` Example: Neural Networks --------------------- ```matlab function test_example_NN load mnist_uint8; train_x = double(train_x) / 255; test_x = double(test_x) / 255; train_y = double(train_y); test_y = double(test_y); % normalize [train_x, mu, sigma] = zscore(train_x); test_x = normalize(test_x, mu, sigma); %% ex1 vanilla neural net rand('state',0) nn = nnsetup([784 100 10]); opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples [nn, L] = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.08, 'Too big error'); %% ex2 neural net with L2 weight decay rand('state',0) nn = nnsetup([784 100 10]); nn.weightPenaltyL2 = 1e-4; % L2 weight decay opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); %% ex3 neural net with dropout rand('state',0) nn = nnsetup([784 100 10]); nn.dropoutFraction = 0.5; % Dropout fraction opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); %% ex4 neural net with sigmoid activation function rand('state',0) nn = nnsetup([784 100 10]); nn.activation_function = 'sigm'; % Sigmoid activation function nn.learningRate = 1; % Sigm require a lower learning rate opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); %% ex5 plotting functionality rand('state',0) nn = nnsetup([784 20 10]); opts.numepochs = 5; % Number of full sweeps through data nn.output = 'softmax'; % use softmax output opts.batchsize = 1000; % Take a mean gradient step over this many samples opts.plot = 1; % enable plotting nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); %% ex6 neural net with sigmoid activation and plotting of validation and training error % split training data into training and validation data vx = train_x(1:10000,:); tx = train_x(10001:end,:); vy = train_y(1:10000,:); ty = train_y(10001:end,:); rand('state',0) nn = nnsetup([784 20 10]); nn.output = 'softmax'; % use softmax output opts.numepochs = 5; % Number of full sweeps through data opts.batchsize = 1000; % Take a mean gradient step over this many samples opts.plot = 1; % enable plotting nn = nntrain(nn, tx, ty, opts, vx, vy); % nntrain takes validation set as last two arguments (optionally) [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); ``` [![Bitdeli Badge](https://d2weczhvl823v0.cloudfront.net/rasmusbergpalm/deeplearntoolbox/trend.png)](https://bitdeli.com/free "Bitdeli Badge")
评论 32
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

拦路雨g

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值