利用LinkedHashMap怎么实现LRU缓存

概述​ 

LinkedHashMap 继承自 HashMap,在 HashMap 基础上,通过维护一条双向链表,解决了 HashMap 不能随时保持遍历顺序和插入顺序一致的问题。LinkedHashMap的存储结构是HashMap的存储结构+双向链表,LinkedHashMap 对访问顺序也提供了相关支持,了解其工作原理必选先了解HashMap的工作原理。

数据结构

以上是LinkedHashMap大致的数据结构,红色的双向箭头表示链表的引用方向,LinkedHashMap在hashmap原有的Node节点上增加了before, after两个指向前后的节点,维护了一个双向链表。

看看类图

上面两张图展示LinkedHashMap 继承了HashMap,并且实现了Map接口。LinkedHashMap的操作单元是Entry,HashMap的操作单元是Node和TreeNode。

核心成员

static class Entry<K,V> extends HashMap.Node<K,V> {
  Entry<K,V> before, after;
  Entry(int hash, K key, V value, Node<K,V> next) {
    super(hash, key, value, next);
  }
}
//链表头
transient LinkedHashMap.Entry<K,V> head;
//链表尾
transient LinkedHashMap.Entry<K,V> tail;
//迭代顺序,true 使用最近被访问的顺序,false为插入顺序
final boolean accessOrder;

以上代码中Entry继承于HashMap.Node节点,在原有属性中增加了before用于指向前一个节点,after节点指向后一个节点。

HashMap中的三个后置方法

// Callbacks to allow LinkedHashMap post-actions
    //访问节点后
    void afterNodeAccess(Node<K,V> p) { }
    //插入节点后
    void afterNodeInsertion(boolean evict) { }
    //删除节点后
    void afterNodeRemoval(Node<K,V> p) { }

注释里面就说了这个几个方法是给LinkedHashMap重写的回调函数,上面几个方法后面会用。

构造方法

 //这个构造方法直接调用了父类的构造方法
    public LinkedHashMap(int initialCapacity, float loadFactor) {
        super(initialCapacity, loadFactor);
        accessOrder = false;
    }
 //初始大小
    public LinkedHashMap(int initialCapacity) {
        super(initialCapacity);
        accessOrder = false;
    }
 //无参数构造函数
    public LinkedHashMap() {
        super();
        accessOrder = false;
    }
 //initialCapacity   初始容量大小,使用无参构造方法时,此值默认是16
 //loadFactor       加载因子,使用无参构造方法时,此值默认是 0.75f
 //accessOrder false: 基于插入顺序   true:  基于访问顺序 
   public LinkedHashMap(int initialCapacity,
                         float loadFactor,
                         boolean accessOrder) {
        super(initialCapacity, loadFactor);
        this.accessOrder = accessOrder;
    }

上面代码除了最后一个构造法是LinkedHashMap特有的,可以改变其遍历方式,其他的都是直接调用了父类的构造方法。

putVal方法

打开LinkedHashMap的源码发现并没有重写put方法,这里展示的还是HashMap的源码(这一段代码的逻辑可以去看上一篇)文章。

 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            //LinkedHashMap对newNode进行了重写
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        //LinkedHashMap对newNode进行了重写
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
      //节点插入后的回调函数,这个也是给LinkeadHashMap用的
        afterNodeInsertion(evict);
        return null;
    }

既然是调用的HashMap的put方法,HashMap操作的是Node节点,LinkedHashMap操作的Entry节点,又没重写put方法。
那是什么时候换掉了操作的对象呢?
上面代码调用了一个newNode方法,有可能LinkedHashMap在这个位置动了手脚,于是找了找果然发现LinkedHashMap果然重写了newNode方法,在这个方法中将Node给换成了Entry(Entry继承于Node)。

    Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
        LinkedHashMap.Entry<K,V> p =
            new LinkedHashMap.Entry<K,V>(hash, key, value, e);
        linkNodeLast(p);
        return p;
    }

上面代码中还干了一件事儿,调用了linkNodeLast方法。

  // link at the end of list
private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
        LinkedHashMap.Entry<K,V> last = tail;
        //把这个节点放到链尾
        tail = p;
        //如果原来的链尾本身为空
        if (last == null)
            head = p;//链头就指向这个节点,这个时候链头和链尾指向同一个节点
        else {
            //这两行代码就是讲新的节点挂到原来的链表尾部。
            p.before = last;
            last.after = p;
        }
    }

可以看到linkNodeLast()方法是在节点创建后维护节点在双向链表中的处理。绿色线条的节点代表新增的节点,红色线条代表需要删除的引用关系,蓝色线条代表新的节点引用关系。
大致情况就是将tail节点的after指向新的节点,新的节点after指向null,新的节点before指向tail节点。

三大后置处理器

插入节点后置处理

继续看putVal,在其最后调用了afterNodeInsertion方法,前面已经说了这个方法就是给LinkedHashMap重写的,直接上重写的代码。

//节点插入后进行回调的 通过put函数调用evict为true
void afterNodeInsertion(boolean evict) { // possibly remove eldest
        LinkedHashMap.Entry<K,V> first;
        //判断是否移除链表头
      if (evict && (first = head) != null && removeEldestEntry(first)) {
            K key = first.key;
            removeNode(hash(key), key, null, false, true);//移除表头
      }
}
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
        return false;
}

上面代码的第一个条件evict,这个参数从put->putVal->afterNodeInsertion过来,evict就是一个true了;第二个条件就是判断空,第三个条件就很重要了,默认返回了一个false,那就是留着给人重写的。上面代码大致的情况就是removeEldestEntry返回一个true的话,头结点就会被移除(后面的LRU和这里有关系)。

删除节点后置处理

LinkedHashMap的删除,也是直接使用的HashMap的删除方法,这里看看删除节点的最后的后置处理方法

  final Node<K,V> removeNode(int hash, Object key, Object value,
                             boolean matchValue, boolean movable) {
      Node<K,V>[] tab; Node<K,V> p; int n, index;
      if ((tab = table) != null && (n = tab.length) > 0 &&
          (p = tab[index = (n - 1) & hash]) != null) {
          Node<K,V> node = null, e; K k; V v;
          if (p.hash == hash &&
              ((k = p.key) == key || (key != null && key.equals(k))))
              node = p;
          else if ((e = p.next) != null) {
              if (p instanceof TreeNode)
                  node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
              else {
                  do {
                      if (e.hash == hash &&
                          ((k = e.key) == key ||
                           (key != null && key.equals(k)))) {
                          node = e;
                          break;
                      }
                      p = e;
                  } while ((e = e.next) != null);
              }
          }
          if (node != null && (!matchValue || (v = node.value) == value ||
                               (value != null && value.equals(v)))) {
              if (node instanceof TreeNode)
                  ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
              else if (node == p)
                  tab[index] = node.next;
              else
                  p.next = node.next;
              ++modCount;
              --size;
              //后置处理
              afterNodeRemoval(node);
              return node;
          }
      }
      return null;
  }

上面一大坨代码可以省略,直接看最后可以看到removeNode后面调用了afterNodeRemoval方法,下面代码的功能就是双向链表中移除某个元素

    void afterNodeRemoval(Node<K,V> e) { // unlink
        //a存储了被删除节点的前一个节点
        //b存储了被删除节点的后一个节点
        LinkedHashMap.Entry<K,V> p =
            (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
        //将被删除的节点的前后置引用置空
        p.before = p.after = null;
        //如果被删除的是头节点,那么将头节点指向后面一个及节点
        if (b == null)
            head = a;
        else
        //如果前面不是null,代表不是头结点,那么把前面的一个的after指向后面一个节点
            b.after = a;
        //判断是不是尾部节点
        if (a == null)
            //将尾结点指向被删除的前面一个
            tail = b;
        else
            //将before节点指向被删除的前一个
            a.before = b;
    }

红色线条和节点代表需要删除的节点,蓝色线条代码新的引用关系。
将节点2的after指向了节点4,将节点4的before指向了节点2,中间就删除了节点3

访问节点后置处理

LinkedHashMap是重写了HashMap的get方法的

    public V get(Object key) {
        Node<K,V> e;
        //获取节点
        if ((e = getNode(hash(key), key)) == null)
            return null;
        //前面提到了 true 使用最近被访问的顺序, false为插入顺序(默认顺序)
        if (accessOrder)
            afterNodeAccess(e);
        return e.value;
    }

以上代码get方法中可以看到只有accessOrder为true,即使用访问顺序时才会执行afterNodeAccess方法。接下来看afterNodeAccess方法做了什么事情。

  void afterNodeAccess(Node<K,V> e) { // move node to last
        LinkedHashMap.Entry<K,V> last;
       //判断当前这个节点是不是最后一个,
        if (accessOrder && (last = tail) != e) {
            LinkedHashMap.Entry<K,V> p =
                (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
            //因为要移动到链表尾部,所以将after设置为null
            p.after = null;
            //如果当前节点是头节点,将头节点指向当前节点的下一个节点
            if (b == null)
                head = a;
            else
                //将上一个节点的after指向当前节点的下一个节点
                b.after = a;
            if (a != null)
                a.before = b;
            else
                last = b;
            if (last == null)
                head = p;
            else {
                p.before = last;
                last.after = p;
            }
            tail = p;
            ++modCount;
        }
    }

上面代码就干了一件事儿,就是把这一次访问的这个节点,在双向链表中的位置移动到最后。

将原有节点2的前后引用关系删除,然后将这个节点移动到最后插入。

LRU算法实现

LRU,全称Least Recently Used最近最少使用,是一种内存淘汰算法。就是最近最少使用的数据将会被淘汰掉,核心思想就是我刚在访问了那么我认为我接下来还要访问你(更详细的百度一下)。

案例

下面假设我们需要缓存10条热点数据,就是最常访问的10条数据,利用LinkedHashMap实现如下

public class linkedHashMapLRU<K, V> extends LinkedHashMap<K, V> {

    public linkedHashMapLRU() {
        super(16, 0.75f, true);
    }

    protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
        if (this.size() > 10)
            return true;
        return false;
    }
    public static void main(String[] args) {
        linkedHashMapLRU<String, String> lru = new linkedHashMapLRU();
        for (int i = 0; i < 50; i++) {
            lru.put(String.valueOf(i), "111");
        }
        System.out.println("第一次顺序----");
        lru.forEach((key, value) -> {
            System.out.print(" " + key);
        });
        lru.get("45");
        System.out.println("\n访问一次45后的顺序----");
        lru.forEach((key, value) -> {
            System.out.print(" "+key);
        });
        lru.put("50","11");
        System.out.println("\n第插入50后的顺序----");
        lru.forEach((key, value) -> {
            System.out.print(" "+key);
        });
    }
}

程序运行结果上面代码和结果可以看出

  1. 如果超过10个,超过10个就将前面的删除掉,只保留10个元素(插入后置方法中对头结点进行了删除)

  2. 将最近访问的一个数据放到最后(移动到最后)

  3. 将最近插入的数据放到最后(在newNode的时候将数据插入到了双向链表的尾部)

总结

  1. HashMap基于hash散列算法实现的一个用于存储键值对数据的一种集合,其底层数据结构采用了数组+链表+红黑树来实现。其中对数组扩容来解决了hash分布不均匀问题,每次当前容量*加载因子时会触发扩容操作,扩容的长度是原来的一倍;使用链表解决hash冲突情况(链地址法),当某个链表长度达到了8且数组的长度达到了64,,这个时候使用了红黑树来保证hash冲突较高的情况下性能。

    LinkedHashMap是一个继承于HashMap的集合,在HashMap的数据结构上增加了一个双向链表来保证数据的顺序性。重写了HashMap的newNode方法,在原有Node中增加了before和after两个属性来连接链表。并且HashMap中预留了插入后置,访问后置,删除后置三个后置处理方法让LinkedHashMap能够参与到Hash的流程中来维护链表。

PS:如果有不详细的地方或者有别的知识点想了解可以在评论区,我会的话可以分享分享

 

扫码关注,更多干货知识分享给你(如有错漏之处,敬请指正)

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值