思路:转载自知乎用户:MakeSail
链接:https://zhuanlan.zhihu.com/p/80538556
无重复字符的最长子串
题目
请从字符串中找出一个最长的不包含重复字符的子字符串,计算该最长子字符串的长度。假设字符串中只包含'a'-'z'的字符。例如,在字符串“arabcacfr”中,最长的不含重复字符的子字符串是"acfr",长度为4
我们不难找出字符串的所有的子字符串,然后就可以判断每个子字符串中是否包含重复的字符。这种蛮力发唯一的缺点就是效率。一个长度为n的字符串有O(n²)个子字符串,我们需要O(n)的时间去判断一个子字符串中是否包含重复的字符,因此该解法的总的时间效率是O(n³)
接下来我们用动态规划算法来提高效率。首先定义函数f(i)表示 以第i个字符为结尾的不包含重复字符的子字符串的最长长度。我们从左到右逐一扫描字符串中的每个字符。当我们计算以第i个字符为结尾的不包含重复字符的子字符串的最长长度f(i)时,我们已经知道f(i-1)了。
如果第i个字符之前没有出现过,那么f(i) = f(i-1) + 1。例如,在字符串"arabcacfr"中,显然f(0)等于1。在计算f(1)时,下标为1的字符'r'之前没有出现过,因此f(1)等于2,即f(1) = f(0) + 1。到目前为止,最长的不含重复子串的子字符串是"ar".
如果第i个字符之前出现过,那情况就要复杂一点了。我们先计算第i个字符和它上次出现在字符串中的位置的距离,并即为d,接着分两种情况分析。第一种情况属实d小于或者等于f(i-1),此时第i个字符上次出现在f(i-1)对应的最长子字符串之中,因此f(i) = d,同时这也意味着在第i个字符出现两次所夹的子字符串中再也没有其他重复字符了。
第二种情况是d大于f(i-1),此时第i个字符上次出现在f(i-1)对应最长子字符串之前,因此仍然有f(i) = f(i-1) + 1。
下面我们对刚才的例子作图分析。
我们可以把逻辑总结成下面几个步骤:
- 创建一个变量x,其为最长不重复子字符串的长度
- 创建一个变量y,以遍历到的字符的上一个字符结尾的不重复最长子字符串的长度,初始化为0
- 遍历字符串
- 该字符是否出现过
- 如果出现过
- 计算当前位置与上次位置之差,令其等于d
- 判断d是否大于y
- 如果大于y=y+1
- 如果小于y=d
- 判断y是否大于x,令x为最大
- 记录当前字符出现的位置
- 如果没有出现过
- y = y+1
- 判断y是否大于x,令x为最大
- 记录当前字符出现的位置
- 如果出现过
思想
动态规划的题目难点是背后的思想
我们通常按如下4个步骤来设计一个动态规划算法:
- 刻画一个最优解的结构特征
- 递归地定义最优解的值
- 计算最优解的值,通常采用自底向上的方法。
- 利用计算出的信息构造一个最优解
步骤1-3是动态规划算法求解问题的基础。如果我们仅仅需要一个最优解的值,而非解本身,恶意忽略步骤四。如果确实要做步骤4,有时候就需要在执行步骤3的过程中维护一些额外信息,以便用来构造一个最优解。
代码:
#include <iostream>
#include <map>
#include <cstdio>
#include <set>
#include <string>
#include <math.h>
#include <algorithm>
using namespace std;
string str;
int main() {
cin>>str;
int num[1000],length[100000],mmax=0;
memset(num, 0, 500);
memset(length, 0, 50000);
for(int i=0;i<str.size();i++){
if(num[str[i]]==0){
if(i==0)length[i]=1;
else length[i]=length[i-1]+1;
}
else {
length[i]=min(i+1-num[str[i]],length[i-1]+1);
}
num[str[i]]=i+1;
if(length[i]>mmax)mmax=length[i];
}
printf("%d",mmax);
return 0;
}