平方数判别

        平方数定义为存在自然数平方根的自然数,如平方数9存在自然数平方根3,而8不存在自然数平方根,所以不是平方数。平方数判别是指给定自然数N,判断N是否为平方数。

        平方数判别的要求很明确,即使不懂程序设计的人稍加思考也会给出解决方案,尽管大多数情况下并不是最优。下面我们分析几种不同的判别方法。

        平方数判别最直接的方法便是遍历穷举法,该方法的基本思想是:从1开始递增遍历到N的自然数,求取平方并与N进行比较。如果平方小于N,则继续遍历;如果等于N,则成功退出;如果大于N,则失败退出。实际程序设计过程中,平方操作可以使用左移运算快速完成。该方法的时间复杂度为O(N1/2)。此时可能有人对时间复杂度提出的疑问,为什么不是O(N)呢?原因很简单,因为对于任意给定的自然数N,当从1开始递增遍历至N1/2便可得到判别结果。此时若平方等于N则成功退出,若大于N则说明N不是平方数。

        遍历穷举法的另一种改进是将乘法操作替换为加法操作。对于给定自然数N,若N是平方数,则在[1, N]之间存在自然数k满足如下条件:

N=k2

=((k-1)+1)2

=[2(k-1)+1]+(k-1)2

=[2(k-1)+1]+ [2(k-2)+1]+(k-2)2

=…

=[2(k-1)+1]+ [2(k-2)+1]+…+(2×2+1)+(2×1+1)+(2×0+1)

=[2(k-1)+1]+ [2(k-2)+1]+…+(2×2+1)+(2×1+1)+1

        通过观察我们发现{1,2×1+1,…,2(k-2)+1,2(k-1)+1}构成了差值为2的等差数列。由此,我们在从1开始的递增遍历过程中,若需判断自然数k是否是N的平方根只需要计算该等差数列的前k项和与N的关系即可。如贵该数列和小于N,则继续遍历;如果等于N,则成功退出;如果大于N,则失败退出。该方法并未降低穷举法的时间复杂度,即仍为O(N1/2),但将原来每次遍历时的乘法操作替换为加法,加快了迭代速度。

        当N较小时穷举法完全可以胜任,但是当N大到一定程度时O(N1/2)的时间复杂度并不能接受。此时,使用二分查找法可以获得O(log2N)的时间复杂度。二分查找法的思想很简单,即对[1, N]之间的自然数使用二分查找递归进行判断。实际上,当N≥4大时,起始区间可缩小至[1, N/2]甚至更小。

        以上便是两种平方数判别的基本方法,更优的解法有待进一步深入发掘。从以上的分析中我们依然可以体会到算法之美,而这美源于对问题的深层次分析和思考,而不仅仅是停留在脑海中蹦出的基础算法层次,这中思维方式也是很多时候我们所必需的。当然,生活中的许多问题并不需要故作深沉地思考过多,否则反而误入歧途,这便要靠我们自身的悟性了。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值