都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
Input
输入数据有多组。每组数据的第一行为以正整数n(0<n<100000),表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T(0<T<100000),表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。
Output
每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
Sample Input
6 5 1 4 1 6 1 7 2 7 2 8 3 0
Sample Output
4
思路就是一个状态的最大值是由上一个时间的左右及此位置确定,初始化dp[t][x]表示第t个时间和x个位置的最大值。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
struct Arr
{
int t;
int x;
}arr[600000];
int f[100001][16];
int dp[100001][16];
int main()
{
int n;
while(scanf("%d",&n)&&n)
{
memset(dp,0,sizeof(dp));
int maxx=0;
for(int i=1;i<=n;i++)
{
int x,t;
scanf("%d%d",&x,&t);
dp[t][x]++;//初始化第t时间第x个位置可以接到多少
maxx=max(maxx,t);
}
//时间从maxx到0,到第0时就是最大了的
//状态转移方程dp[i][j]=max(max(dp[i+1][j+1],dp[i+1][j]),dp[i+1][j-1])
//代表第i个时间第j个点时的最大值,他可以由第i+1时间的第j+1个位置或第j个位置
//或j或j-1个位置转移而来
for(int i=maxx-1;i>=0;i--)
{
for(int j=0;j<12;j++)
{
dp[i][j]+=max(max(dp[i+1][j+1],dp[i+1][j]),dp[i+1][j-1]);
}
}
printf("%d\n",dp[0][5]);
}
}