CF--Minimize the error--思维+优先队列

B. Minimize the error

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given two arrays A and B, each of size n. The error, E, between these two arrays is defined . You have to perform exactly k1 operations on array A and exactly k2 operations on array B. In one operation, you have to choose one element of the array and increase or decrease it by 1.

Output the minimum possible value of error after k1 operations on array A and k2 operations on array B have been performed.

Input

The first line contains three space-separated integers n (1 ≤ n ≤ 103), k1 and k2 (0 ≤ k1 + k2 ≤ 103, k1 and k2 are non-negative) — size of arrays and number of operations to perform on A and B respectively.

Second line contains n space separated integers a1, a2, ..., an ( - 106 ≤ ai ≤ 106) — array A.

Third line contains n space separated integers b1, b2, ..., bn ( - 106 ≤ bi ≤ 106)— array B.

Output

Output a single integer — the minimum possible value of  after doing exactly k1 operations on array A and exactly k2operations on array B.

Examples

input

Copy

2 0 0
1 2
2 3

output

Copy

2

input

Copy

2 1 0
1 2
2 2

output

Copy

0

input

Copy

2 5 7
3 4
14 4

output

Copy

1

Note

In the first sample case, we cannot perform any operations on A or B. Therefore the minimum possible error E = (1 - 2)2 + (2 - 3)2 = 2.

In the second sample case, we are required to perform exactly one operation on A. In order to minimize error, we increment the first element of A by 1. Now, A = [2, 2]. The error is now E = (2 - 2)2 + (2 - 2)2 = 0. This is the minimum possible error obtainable.

In the third sample case, we can increase the first element of A to 8, using the all of the 5 moves available to us. Also, the first element of B can be reduced to 8 using the 6 of the 7 available moves. Now A = [8, 4] and B = [8, 4]. The error is now E = (8 - 8)2 + (4 - 4)2 = 0, but we are still left with 1 move for array B. Increasing the second element of B to 5 using the left move, we get B = [8, 5] and E = (8 - 8)2 + (4 - 5)2 = 1.

 

给出两组数,求上面那个式子的最小值,并给出k1、k2表示第一、二组数课使某个数+1或-1。


问题转化成他们的差的平方的和最小。用一个队列存储他们的差值的绝对值,然后不断让队列中大的减去1,如果队列中最大值==0那么退出,这时判断剩余的k(k1+k2)是奇数或偶数即可。

#include <algorithm>    //STL通用算法
#include <bitset>     //STL位集容器
#include <cctype>
#include <cerrno>
#include <clocale>
#include <cmath>
#include <complex>     //复数类
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>      //STL双端队列容器
#include <exception>    //异常处理类
#include <fstream>
#include <functional>   //STL定义运算函数(代替运算符)
#include <limits>
#include <list>      //STL线性列表容器
#include <map>       //STL 映射容器
#include <iomanip>
#include <ios>      //基本输入/输出支持
#include<iosfwd>     //输入/输出系统使用的前置声明
#include <iostream>
#include <istream>     //基本输入流
#include <ostream>     //基本输出流
#include <queue>      //STL队列容器
#include <set>       //STL 集合容器
#include <sstream>    //基于字符串的流
#include <stack>      //STL堆栈容器    
#include <stdexcept>    //标准异常类
#include <streambuf>   //底层输入/输出支持
#include <string>     //字符串类
#include <utility>     //STL通用模板类
#include <vector>     //STL动态数组容器
#include <cwchar>
#include <cwctype>
#define ll long long
using namespace std;
int dx[]= {-1,1,0,0,-1,-1,1,1};
int dy[]= {0,0,-1,1,-1,1,1,-1};
const int maxn = 10000+66;
const ll mod=1e9+7;
int n,k1,k2;
int a[maxn];
int b[maxn];
int c[maxn];
priority_queue<int,vector<int>,less<int> >q;
int main()
{
    scanf("%d %d %d",&n,&k1,&k2);
    for(int i=1; i<=n; i++)
    {
        scanf("%d",&a[i]);
    }
    for(int i=1; i<=n; i++)
    {
        scanf("%d",&b[i]);
        c[i]=a[i]-b[i];
        q.emplace(abs(c[i]));
    }
    int k=k1+k2;
    while(k>0)
    {
        int v=q.top();
        q.pop();
        if(v==0)
        {
            break;
        }
        v--;
        q.emplace(v);
        k--;
    }
    ll ans=0;
    while(q.size())
    {
        int v=q.top();
        q.pop();
        ans+=(ll)v*v;
    }
    printf("%lld\n",k%2!=0?1:ans);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值