HDU-6128 Inverse of sum(二次剩余/公式)

HDU-6128
n 个小于质数p的非负整数a1n,你想知道有多少对 i,j(1i<jn)i,j(1i<jn) ,使得模p意义下 1ai+aj1ai+1aj ​即这两数的和的逆元等于它们逆元的和,注意零元没有逆元。 1n105,2p1018

式子推一下可得当且仅当模意义下两数之比为 1+32 132 。于是求取 3pt ,当t不存在时无解. 则 t=3modp t2=3modp
则比值为 aiaj=1±t2 的数对符合要求。对于每一个 aj ,我们找出 ai=1±t2aj 的数量,就能统计出答案。

  • 模数为2的时候特判,因为有除2操作,需要2的逆元存在。
  • 注意 1+t2=1+t2 的情况
  • 忽略为0的输入
  • 模数很大,使用o1乘。

另一种方法是推导到 a2+b2+ab=0
a=b,3a2=0 ,只有p=3时有正数解,且解为 a=1,2
ab ,两边乘 ab ,得到 a3=b3modp , 查找符合等式的数量即可。

下面是第一种方法的代码

#include <bits/stdc++.h>
using namespace std;
const int MAXN=1e5+7;

long long mul(long long x,long long y,long long mod) //O1乘
{
    return (x*y-(long long)(x/(long double)mod*y+1e-3)*mod+mod)%mod;
}
long long qpow(long long a,long long b,long long c)
{
    long long r=1;
    while(b)
    {
        if(b&1)
            r=mul(r,a,c);
        b>>=1;
        a=mul(a,a,c);
    }
    return r;
}
long long modsqr(long long a,long long n)//n为质数
{
    long long b,k,i,x;
    a=(a%n+n)%n;
    if(a==0)//a为0时return
        return 0;
    if(n==2)
        return a%n;
    if(qpow(a,(n-1)/2,n)==1)//判断有无二次剩余
    {
        if(n%4==3)//-1是二次非剩余
            x=qpow(a,(n+1)/4,n);
        else
        {
            for(b=1;qpow(b,(n-1)/2,n)==1;b=1+rand()%(n-1));
            i=(n-1)/2;
            k=0;
            do
            {
                i/=2,k/=2;
                if((mul(qpow(a,i,n),qpow(b,k,n),n)+1)%n==0)
                    k+=(n-1)/2;
            }
            while(i%2==0);
            x=mul(qpow(a,(i+1)/2,n),qpow(b,k/2,n),n);
        }
        if(x*2>n)
            x=n-x;
        return x;
    }
    return -1;
}
vector<long long> val;
vector<long long> check;
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        long long n,p,ta;
        scanf("%lld%lld",&n,&p);
        val.clear();
        for(int i=0;i<n;i++)
        {
            scanf("%lld",&ta);
            if(ta)
                val.push_back(ta);
        }
        n=val.size();
        long long ans=0;
        if(p==2)
            ans=1ll*n*(n-1)/2;
        else
        {
            long long t=modsqr(-3,p);
            if(t==-1)
            {
                printf("0\n");
                continue;
            }
            long long inv2=(p+1)>>1;
            check.clear();
            check.push_back(mul((-1+p+t)%p,inv2,p));
            check.push_back(mul((-1+p-t)%p,inv2,p));
            sort(val.begin(),val.end());
            if(check[0]==check[1])
                check.pop_back();
            long long tmp;
            for(int i=0;i<n;i++)
            {
               for(auto item:check)
               {
                   tmp=mul(item,val[i],p);
                   ans+=upper_bound(val.begin(),val.begin()+i,tmp)-lower_bound(val.begin(),val.begin()+i,tmp);
               }
            }
        }
        printf("%lld\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值