HDU-6128
有
n
个小于质数p的非负整数
式子推一下可得当且仅当模意义下两数之比为
−1+−3√2
或
−1−−3√2
。于是求取
−3对p的二次剩余记为t
,当t不存在时无解. 则
t=−3‾‾‾√modp
即
t2=−3modp
。
则比值为
aiaj=−1±t2
的数对符合要求。对于每一个
aj
,我们找出
ai=−1±t2aj
的数量,就能统计出答案。
- 模数为2的时候特判,因为有除2操作,需要2的逆元存在。
- 注意 −1+t2=−1+t2 的情况
- 忽略为0的输入
- 模数很大,使用o1乘。
另一种方法是推导到
a2+b2+ab=0
当
a=b时,3a2=0
,只有p=3时有正数解,且解为
a=1,2
当
a≠b时
,两边乘
a−b
,得到
a3=b3modp
, 查找符合等式的数量即可。
下面是第一种方法的代码
#include <bits/stdc++.h>
using namespace std;
const int MAXN=1e5+7;
long long mul(long long x,long long y,long long mod) //O1乘
{
return (x*y-(long long)(x/(long double)mod*y+1e-3)*mod+mod)%mod;
}
long long qpow(long long a,long long b,long long c)
{
long long r=1;
while(b)
{
if(b&1)
r=mul(r,a,c);
b>>=1;
a=mul(a,a,c);
}
return r;
}
long long modsqr(long long a,long long n)//n为质数
{
long long b,k,i,x;
a=(a%n+n)%n;
if(a==0)//a为0时return
return 0;
if(n==2)
return a%n;
if(qpow(a,(n-1)/2,n)==1)//判断有无二次剩余
{
if(n%4==3)//-1是二次非剩余
x=qpow(a,(n+1)/4,n);
else
{
for(b=1;qpow(b,(n-1)/2,n)==1;b=1+rand()%(n-1));
i=(n-1)/2;
k=0;
do
{
i/=2,k/=2;
if((mul(qpow(a,i,n),qpow(b,k,n),n)+1)%n==0)
k+=(n-1)/2;
}
while(i%2==0);
x=mul(qpow(a,(i+1)/2,n),qpow(b,k/2,n),n);
}
if(x*2>n)
x=n-x;
return x;
}
return -1;
}
vector<long long> val;
vector<long long> check;
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
long long n,p,ta;
scanf("%lld%lld",&n,&p);
val.clear();
for(int i=0;i<n;i++)
{
scanf("%lld",&ta);
if(ta)
val.push_back(ta);
}
n=val.size();
long long ans=0;
if(p==2)
ans=1ll*n*(n-1)/2;
else
{
long long t=modsqr(-3,p);
if(t==-1)
{
printf("0\n");
continue;
}
long long inv2=(p+1)>>1;
check.clear();
check.push_back(mul((-1+p+t)%p,inv2,p));
check.push_back(mul((-1+p-t)%p,inv2,p));
sort(val.begin(),val.end());
if(check[0]==check[1])
check.pop_back();
long long tmp;
for(int i=0;i<n;i++)
{
for(auto item:check)
{
tmp=mul(item,val[i],p);
ans+=upper_bound(val.begin(),val.begin()+i,tmp)-lower_bound(val.begin(),val.begin()+i,tmp);
}
}
}
printf("%lld\n",ans);
}
return 0;
}