用caffe训练测试自己的图片

本文详细介绍了如何使用Caffe训练自己的图片数据集,包括数据准备、转换为lmdb格式、计算均值以及创建模型和配置文件的步骤。通过创建train.txt和test.txt清单文件,将图片转换为lmdb数据格式,接着计算图像均值,最后配置模型参数进行训练。
摘要由CSDN通过智能技术生成

所有的操作是基于caffe的根目录/caffe-master/来操作的:

数据准备

我所用的图片是车牌识别中,0~9数字图片,在data下面新建一个number目录,用来存放训练图片(caffenumimg_train)与测试图片(caffenumimg_test),0~9分别有200张左右的训练图片和50张左右的测试图片

转换成lmdb格式文件

首先,在data/number/目录编写一个脚本create_filelist.sh文件,用来生成train.txt和test.txt清单文件。清单文件train.txt与test.txt主要用来记录训练图片与测试图片的目录与标签。

#!/usr/bin/env sh
DATA_TRAIN=data/number/caffenumimg_train
DATA_TEST=data/number/caffenumimg_test
MY=data/number

echo "Create train.txt..."
rm -rf $MY/train.txt
for i in 0 1 2 3 4 5 6 7 8 9 
do
find $DATA_TRAIN/$i/ -name *.bmp | cut -d '/' -f1-5 | sed "s/$/ $i/">>$MY/train.txt
done
echo "Create test.txt..."
rm -rf $MY/test.txt
for i in 0 1 2 3 4 5 6 7 8 9 
do
find $DATA_TEST/$i/ -name *.bmp | cut -d '/' -f1-5 | sed "s/$/ $i/">>$MY/test.txt
done
echo "All done"

这段脚本的大致意思(生成test.txt与生成train.txt大体相同这里只介绍生成train.txt脚本的逻辑):
首先删除已经有的train.txt清单文件,然后遍历data/number/caffenumimg_train目录中的0~9文件夹,
读取所有的.bmp文件的目录,以/划分目录字段,截取1到5这几个字段,在字段结尾处加类别标签,保存到train.txt文件中。

然后,运行脚本

sh  /data/number/create_filelist.sh

得到如下图所示的结果:
这里写图片描述

接着再编写一个脚本文件放到目录examples/number/,调用convert_imageset命令来转换lmdb数据格式:

#!/usr/bin/env sh
# Create the imagenet lmdb inputs
# N.B. set the path to the imagenet train + val data dirs
set -e

EXAMPLE=examples/number
DATA=data/number
TOOLS=build/tools

TRAIN_DATA_ROOT=./
TEST_DATA_ROOT=./

rm $EXAMPLE/number_train_lmdb -rf
rm  $EXAMPLE/number_test_lmdb -rf

# Set RESIZE=true to resize the images to 256x256. Leave as false if images have
# already been resized using another tool.
RESIZE=true
if $RESIZE; then
  RESIZE_HEIGHT=256
  RESIZE_WIDTH=256
else
  RESIZE_HEIGHT=0
  RESIZE_WIDTH=0
fi

if [ ! -d "$TRAIN_DATA_ROOT" ]; then
  echo "Error: TRAIN_DATA_ROOT is not a path to a directory: $TRAIN_DATA_ROOT"
  echo "Set the TRAIN_DATA_ROOT variable in create_imagenet.sh to the path" \
       "where the ImageNet training data is stored."
  exit 1
fi

if [ ! -d "$TEST_DATA_ROOT" ]; then
  echo "Error: TEST_DATA_ROOT is not a path to a directory: $TEST_DATA_ROOT"
  echo "Set the TEST_DATA_ROOT variable in create_imagenet.sh to the path" \
       "where the ImageNet validation data is stored."
  exit 1
fi

echo "Creating train lmdb..."

GLOG_logtostderr=1 $TOOLS/convert_imageset \
    --resize_height=$RESIZE_HEIGHT \
    --resize_width=$RESIZE_WIDTH \
    --shuffle \
    $TRAIN_DATA_ROOT\
    $DATA/train.txt \
    $EXAMPLE/number_train_lmdb

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值