机器学习 之 LBP特征

综述::
LBP特征:Local Binary Pattern,局部二值模式特征,是一种用来描述图像局部纹理特征的算子。LBP特征算子计算简单、效果较好,数据量小,因此LBP特征在计算机视觉的许多领域都得到了广泛的应用,LBP特征比较多用于目标检测中。LBP计算出的特征具有灰度不变性和旋转不变性等显著优点,例如对光照不敏感。

LBP的基本算子

原始的LBP算子定义为在3*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素 点的位置被标记为1,否则为0。这样,3*3邻域内的8个点经过比较可产生8个0或1,将这8个0或1作为二进制数按照一定的次序排列形成一个二进制数字,这个二进制数字就是中心像素的LBP值。LBP值共有 种可能,因此LBP值有256种。像素之间的比较反映的是一种像素之间的差异关系,能够很好反映图像局部纹理这种特征。
这里写图片描述

LBP特征的改进

http://blog.csdn.net/pi9nc/article/details/26678691
http://blog.csdn.net/quincuntial/article/details/50541815
http://www.open-open.com/lib/view/open1440832074794.html
这三篇博客对LBP特征的改进版本均有很好的描述,我在这里做个总结:

圆形LBP算子:

所谓圆形LBP算子:如果要计算某个像素的点LBP特征,以这个像素点为中心,以一个任意大小半径R画一个圆,将落在圆内的像素与中心点像素比较得到LBP算子。如下图:
这里写图片描述

这样做的好处是:它能够适应一定程序上纹理的尺度变化,并达到灰度和旋 转不变性的要求。

LBP旋转不变模式

首先讲下为什么LBP特征会有旋转可变这个情况,就是以上面3x3区域的像素值为例:
这里写图片描述
逆时针旋转一格后得到的LBP值与原始不同。
那么旋转不变模式是什么呢,就是旋转圆形邻域一周得到一系列初始定义的 LBP值,取其最小值作为该邻域的 LBP 值,这样无论怎样旋转,该点LBP值始终不变。如下图所示:
这里写图片描述

LBP等价模式

具体可见上面三个博客里的介绍,总的来说:
原来是LBP的每个位都作为该特征的决定项,例如01100100与01101100被认为是两个不同的特征值,采用LBP的等价模式后,只认为0到1的跳变与1到0的跳变为一个特征决定项,那么这样说的话,01100100中0~1有2个,1~0有2个,而01101100中0~1有2个,1~0也是有2个,我们认为它是同一个特征,这样LBP特征的种类就大减少了。

opencv中LBP特征实现

opencv中LBP特征的实现原理:将一个图像窗

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值