smart200 电压类型报警【过压、欠压】

三相电压过欠压报警【过压、欠压】
个人理解,欢迎指正

序号地址符号变量类型数据类型注释
1LDOUAINREALA相电压
2LD4UBINREALB相电压
3LD8UCINREALC相电压
4IN
5LD12ED_UIN OUTREAL额定电压
6LD16HI_UuIN_OUTREAL过压系数
7LB20HI_UTIN_OUTBYTE过压触发时间
8LD21LO_UuIN_OUTREAL欠压系数
9LB25LO_UTIN_OUTBYTE欠压触发时间
10LB26time1IN_OUTBYTE过压计时
11LB27time2IN_OUTBYTE欠压计时
12IN_OUT
13L28.0HI_UOUTBOOL过压报警首触
14L28.1LO_UOUTBOOL欠压报警
15OUT
16LD29Ulimt_HITEMPREAL过压参数值
17LD33Ulimt_LOTEMPREAL欠压参数值
18L37.0bool1TEMPBOOL过压报警首触
19L37.1bool2TEMPBOOL欠压报警首触
20LD38UsumTEMPREAL
21TEMP
//Network 1 
// 初始化//范围:
// 额定电压	88-300
// 过压系数	1.05-2.0
// 欠压系数	0.2-0.95
// 过压触发时间	1-25s
// 欠压触发时间	1-25s
LD     SM0.0
LPS
AR<=   LD12, 3.0
MOVR   6.3, LD12
LRD
AR>=   LD12, 300.0
MOVR   6.3, LD12
LRD
AR<    LD16, 1.05
MOVR   1.2, LD16
LRD
AR>    LD16, 2.0
MOVR   2.0, LD16
LRD
AB=    LB20, 0
MOVB   5, LB20
LRD
AB>    LB20, 25
MOVB   25, LB20
LRD
AR<    LD21, 0.2
MOVR   0.8, LD21
LRD
AR>    LD21, 0.95
MOVR   0.8, LD21
LRD
AB=    LB25, 0
MOVB   5, LB25
LPP
AB>    LB25, 25
MOVB   25, LB25
//Network 2 
// 过压
// 1、额定电压×过压系数==过压参数值
// 2--4、任意一相电压>过压参数值,过压报警首触
// 5、过压报警首触,计时时间<过压延时接通时间,过压延时接通时间每秒自+1s
// 6、                        ,计时时间>=过压延时接通时间,触发过压报警
// 7、过压报警首触为0,过压报警置0
// 8、                              ,计时时间归0
LD     SM0.0
LPS
MOVR   LD12, LD29
*R     LD16, LD29
LDR>   LD0, LD29
OR>    LD4, LD29
OR>    LD8, LD29
ALD
=      L37.0
LRD
A      L37.0
LPS
AB<    LB26, LB20
A      SM0.5
EU
INCB   LB26
LPP
AB>=   LB26, LB20
S      L28.0, 1
LPP
AN     L37.0
R      L28.0, 1
MOVB   0, LB26
//Network 3 
// 欠压,三相打压大于5.0有效
// 1、三相电压求和????????????????
// 2、额定电压×欠压系数==欠压参数值
// 4--5、任意一相电压<欠压参数值,欠压报警首触
// 6、欠压报警首触,计时时间<欠压延时接通时间,欠压延时接通时间每秒自+1s
// 6、                        ,计时时间>=欠压延时接通时间,触发欠压报警
// 7、欠压报警首触为0,欠压报警置0
// 8、                              ,计时时间归0
LD     SM0.0
LPS
CALL   SBR94, LD0, LD4, LD8, LD38
MOVR   LD12, LD33
*R     LD21, LD33
LDR<   LD0, LD33
OR<    LD4, LD33
OR<    LD8, LD33
ALD
AR>    LD38, 5.0
=      L37.1
LRD
A      L37.1
LPS
AB<    LB27, LB25
A      SM0.5
EU
INCB   LB27
LPP
AB>=   LB27, LB25
S      L28.1, 1
LPP
AN     L37.1
R      L28.1, 1
MOVB   0, LB27
内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值