文字版
原式:(1+3+6+10+15+...n*(n+1)/2)
原式=1+(1+2)+(1+2+3)+...+(1+2+3+...+n)因为
1+2+3+...+n = n*(n+1)/2 = n/2+n^{2}/2
所以
原式=(1+2+3+...+n)/2+(1^{2}+2^{2}+3^{2}+...+n^{2})/2因为 1^{2}+2^{2}+3^{2}+...+n^{2}=n*(n+1)*(2n+1)/6
================插曲:推理过程如下================
因为 (n+1)^{3} = n^{3} + 3*n^{2}+3*n+1
所以
2^{3}+3^{3}+...+(n+1)^{3} =
1^{3}+2^{3}+3^{3}+...+n^{3}
+ 3*(1^{2}+2^{2}+3^{2}...+n^{2})
+ 3*(1+2+3+...+n)
+ n所以
3*(1^{2}+2^{2}+3^{2}...+n^{2}) =
(n+1)^{3} - 1^{3} - 3*(1+2+3+...+n) - n =
n^{3} + 3*n^{2} + 3*n - 3*n(n+1)/2 - n =
(2*n^{3} + 3*n^{2} + n) / 2 =
n*(2*n^{2} + 3*n + 1) / 2 =
n*(n+1)*(2*n+1) / 2所以
1^{2}+2^{2}+3^{2}...+n^{2} = n*(n+1)*(2*n+1) / 6
================插曲:推理过程如上================所以
原式=[n*(n+1)/2]/2+[n*(n+1)*(2n+1)/6]/2
=n*(n+1)/4 + n*(n+1)*(2n+1)/12
=n*(2*n^{2}+6*n+4)/12
=n*(n^{2}+3*n+2)/6
=n*(n+1)*(n+2)/6
图片版
原式:
等于
因为
所以原式等于
因为
所以原式等于
扩展
的推理过程
因为
所以
所以
所以
学习网址
https://iask.sina.com.cn/b/5484188.html
https://www.yulucn.com/question/8400116221
https://zhidao.baidu.com/question/559854672673165092.html