树、二叉树、二叉搜索树、B树、B+树的区别

87 篇文章 6 订阅
本文深入探讨了数据结构中的二叉树类型,包括二叉树和二叉搜索树的概念及其应用场景,特别是二叉搜索树在手机号查询中的巧妙应用。进一步讲解了平衡二叉树——AVL树的特性,以及B树和B+树的区别,特别强调了B+树在现代操作系统和数据库如MySQL Innodb中的重要作用。
摘要由CSDN通过智能技术生成

概述

关于树的概念很多,B树,B+树,红黑树等等。下面根据我自己的学习和理解。给出一些中文的定义。

什么是二叉树(Binary Tree)

二叉树是每个节点最多有两个子节点的树。

二叉树的叶子节点有0个字节点,二叉树的根节点或者内部节点有一个或者两个字节点。

 

什么是二叉搜索树(Binary Search Tree)

二叉查找树又叫二叉搜索树,

它或者是一棵空树,或者是具有下列性质的二叉树:

若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;

若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;

它的左、右子树也分别为二叉搜索树。

一个印象比较深的二叉搜索树就是问手机号。

假设你遇到一个美女想问他手机号,但是美女一般不告诉你数字。她只回答是否题。

 

那么你可以问她不超过14个问题就可以知道她手机号了。

 

假定手机号最大值是1000 0000 0000

是否大于500 0000 0000,开始分叉。

如果大于500 0000 0000,那么是否大于750 0000 0000。。。

如果小于500 0000 0000,那么是否大于250 0000 0000。。。

 

以此类推,这就是一个典型的二叉搜索树。看起来很神奇,其实源自于一种巧妙的数学。

什么是平衡二叉树(AVL Tree)

 AVL树全称G.M. Adelson-Velsky和E.M. Landis,这是两个人的人名。

AVL树定义:

所有节点的左右子树的高度差小于1的二叉树。

 

如下图

根节点左边高度是3,因为左边最多有3条边;右边高度而2,相差1.

根节点左边的节点50的左边是1条边,高度为1,右边有两条边,高度为2,相差1。

什么是B树(B tree)

 B树也叫或B-树、B_树。

B树英文官方定义:

1、Every node has at most m children.
2、Every non-leaf node (except root) has at least [m/2] child nodes.
3、The root has at least two children if it is not a leaf node.
4、A non-leaf node with k children contains k − 1 keys.
5、All leaves appear in the same level.

 

我理解的B树定义:

1、根结点至少有两个子节点;

 2、每个非叶子节点并且非根节点最少有m/2个,即内部节点的字节点个数最少也有m/2个。

3、根节点最少有两个字节点。

4、有k个关键字(关键字按递增次序排列)的非叶结点恰好有k+1个孩子。

5、所有叶子节点在同一层,即所有叶子几点高度一致。

 

如下图(B树的内部节点可以存放数据,类似ZK的中间节点一样。B树不是每个节点都有足够多的子节点)

什么是B+树(B+ tree)

 B+树是从B树衍生而来。

跟B的不同:

1、B+树非叶子节点不存放数据,只存放keys。

2、B+树的叶子节点之间存在指针相连,而且是单链表

 

如下图(其实B+树上二叉搜索树的扩展,二叉搜索树是每次一分为二,B树是每次一分为多)

现代操作系统中,磁盘的存储结构使用的是B+树机制,mysql的innodb引擎的存储方式也是B+树机制

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值