立体视觉
小白的进阶
立体视觉,机器学习,Python,搜索
展开
-
A Non-Local Cost Aggregation Method for Stereo Matching
1. 算法思想本文的算法思想,是放弃原有的基于支持窗口的方式,采用基于全局MST的方式,构建代价聚合公式。MST,采用像素之间颜色信息作为“边权值”,以全图的像素作为结点,构建过程中不断删除权值较大的边,然后用克鲁斯卡尔或者普里姆算法进行计算,求得最小生成树(MST),就得到了全图像素之间的关系。因为支持窗口的办法,本质上只考虑了窗口内像素对中心像素的影响,窗口之外的像素的影响彻底忽略,其...原创 2016-08-02 16:06:37 · 1975 阅读 · 11 评论 -
经典算法Semi-Global Matching(SGM)文献笔记(一)
SGM算法源于《Stereo Processing by Semi-Global Matching and Mutual Information》一文,我认为这篇文章是立体匹配算法中最给力的,放眼KITTI可以发现目前排名前五十的算法几乎一半都是对SGM的改进,具有最强的实用价值。SGM中文名称“半全局匹配”,顾名思义,其介于局部算法和全局算法之间,所谓半全局指的是算法既没有只考虑像素的局...原创 2019-11-06 14:31:17 · 13712 阅读 · 4 评论 -
CT/MCT/RMCT算法的学习和实现
一、Census Transform(CT)算法的学习 Census Transform 算法是Ramin Zabih 和 John Woodfill 于1994年在他们的论文《Non-parametric LocalTransforms for Computing VisualCorrespondence》中提出的,正如他们在论文中所说,这是一种非参数变换,主要用来表征图像的局转载 2017-02-16 10:12:20 · 2253 阅读 · 1 评论 -
Opencv中的双目标定和校正
双目摄像头定标不仅要得出每个摄像头的内部参数,还需要通过标定来测量两个摄像头之间的相对位置(即右摄像头相对于左摄像头的三维平移 t 和旋转 R 参数)。图6要计算目标点在左右两个视图上形成的视差,首先要把该点在左右视图上两个对应的像点匹配起来。然而,在二维空间上匹配对应点是非常耗时的,为了减少匹配搜索范围,我们可以利用极线约束使得对应点的匹配由二维搜索降为一维搜索。转载 2017-02-15 16:07:26 · 8447 阅读 · 0 评论 -
立体视觉标定和校正
1.读取左右相机图片序列双目相机的图片序列放在Demon的路径下,左右相机的图像的名字分别存放在两个txt文件中,程序分别通过这两个txt文件读取对应的图片序列。主注意:我们假设已经将摄像机排列好了,其图像扫描线是粗略物理对齐,从而使得每台摄像机本质上都具有相同的视场。2.提取图片角点,并分别标定左右相机内参矩阵和畸变向量调用cvFindChessboard原创 2017-01-16 17:20:59 · 7422 阅读 · 2 评论 -
随机抽样一致性算法(RANSAC)
本文翻译自维基百科,英文原文地址是:http://en.wikipedia.org/wiki/ransac,如果您英语不错,建议您直接查看原文。 RANSAC是“RANdom SAmple Consensus(随机抽样一致)”的缩写。它可以从一组包含“局外点”的观测数据集中,通过迭代方式估计数学模型的参数。它是一种不确定的算法——它有一定的概率得出一个合理的结果;为了提高概率必须提高迭代翻译 2016-06-06 16:41:37 · 1015 阅读 · 0 评论 -
RANSAC算法详解
随机抽样一致算法(random sample consensus,RANSAC),采用迭代的方式从一组包含离群的被观测数据中估算出数学模型的参数。算法简介:RANSAC算法的基本假设是样本中包含正确数据(inliers,可以被模型描述的数据),也包含异常数据(outliers,偏离正常范围很远、无法适应数学模型的数据),即数据集中含有噪声。这些异常数据可能是由于错误的测量、错误的假设、错误原创 2016-06-15 15:19:01 · 43001 阅读 · 0 评论 -
经典算法Semi-Global Matching(SGM)文献笔记(二)
上一篇博客中提到了SGM的第一部分,基于分层互信息(HMI)的代价计算,本文继续说说自己对SGM代价聚合部分的理解。SGM的代价聚合,其实仔细看看,这并不是严格意义上的代价聚合,因为SGM是为了优化一个能量函数,这和一般的全局算法一样,如何利用优化算法求解复杂的能量函数才是重中之重,其能量函数如下所示:其中,C(p, Dp)代表的就是基于互信息的代价计算项,后面两项指的是当前像素p和其邻域内所...原创 2019-11-06 14:31:05 · 4719 阅读 · 0 评论 -
SGM算法思路
semi-global matching(缩写SGM)是一种用于计算双目视觉中disparity的半全局匹配算法。在OpenCV中的实现为semi-global block matching(SGBM)。SGBM的思路是:通过选取每个像素点的disparity,组成一个disparity map,设置一个和disparity map相关的全局能量函数,使这个能量函数最小化,以达到求原创 2016-09-14 15:28:19 · 17290 阅读 · 2 评论 -
Sobel图像处理详解
首先,我们来开一下计算机是如何检测边缘的。以灰度图像为例,它的理论基础是这样的,如果出现一个边缘,那么图像的灰度就会有一定的变化,为了方便假设由黑渐变为白代表一个边界,那么对其灰度分析,在边缘的灰度函数就是一个一次函数y=kx,对其求一阶导数就是其斜率k,就是说边缘的一阶导数是一个常数,而由于非边缘的一阶导数为零,这样通过求一阶导数就能初步判断图像的边缘了。通常是X方向和Y方向的导数,也就是梯度。原创 2016-09-30 11:10:43 · 5699 阅读 · 2 评论 -
A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms
A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence AlgorithmsAbstract: 本文主要提出的是稠密的、两帧图像的立体匹配方法的分类方法。本分类法设计目的在于评估独立的立体匹配算法的不同组分及其设计方案。本平台对现有的多种立体匹配算法进行了比较和进行试验,收集了便于评估的数据集,建立了具有一般翻译 2016-10-09 11:42:53 · 5823 阅读 · 2 评论 -
Cross-Scale Cost Aggregation for Stereo Matching
1. 立体匹配概念立体匹配的意思是基于同一场景得到的多张二维图,还原场景的三维信息,一般采用的图像是双目图像,如下所示,第一幅图和第二幅图分别是双目相机得到的左图和右图,第三幅图就是视差图,一看就知道,这就是场景三维图像。 左图 右图原创 2016-12-16 09:40:38 · 1252 阅读 · 1 评论 -
图像处理中的census变换
Census变换是一种非参数的局部变换(即依赖于局部强度值的相对顺序,而不是强度值本身)。census变换用于图像处理中,将方形窗口内的像素的强度值映射到一个比特串,从而捕捉图像的结构。中心像素的强度值将被这个比特串所代替,这个比特串由一组布尔值的比较得到,例如,在一个正方形窗口中,从左边移动到右边。 if(当前像素强度值 else 布尔型 bit=1对于每一个比较,比特串翻译 2016-10-08 17:44:46 · 9601 阅读 · 3 评论