特征点检测
该专栏主要介绍常用的几种特征点检测方法和特征描述方法,包括SIFT算法,SURF算法,ORB算法,FAST算法,以及BRIEF描述方法。
小白的进阶
立体视觉,机器学习,Python,搜索
展开
-
ORB特征点检测
这篇文章我们将介绍一种新的具有局部不变性的特征 —— ORB特征,从它的名字中可以看出它是对FAST特征点与BREIF特征描述子的一种结合与改进,这个算法是由Ethan Rublee,Vincent Rabaud,Kurt Konolige以及Gary R.Bradski在2011年一篇名为“ORB:An Efficient Alternative to SIFT or SURF”的文章中提出原创 2016-04-21 09:46:04 · 3923 阅读 · 0 评论 -
FAST特征点检测
FAST(Features fromaccelerated segment test)是一种角点检测方法,它可以用于特征点的提取,并完成跟踪和映射物体。FAST角点检测算法最初是由Edward Rosten和Tom Drummond提出,该算法最突出的优点是它的计算效率。该算法的基本原理是使用圆周长为16个像素点(半径为3的Bresenham圆)来判定其圆心像素P是否为角点。在圆周上按顺时原创 2016-04-21 14:42:06 · 12373 阅读 · 0 评论 -
BRIEF描述子
1.BRIEF的基本原理我们已经知道SIFT特征采用了128维的特征描述子,由于描述子用的浮点数,所以它将会占用512 bytes的空间。类似地,对于SURF特征,常见的是64维的描述子,它也将占用256bytes的空间。如果一幅图像中有1000个特征点(不要惊讶,这是很正常的事),那么SIFT或SURF特征描述子将占用大量的内存空间,对于那些资源紧张的应用,尤其是嵌入式的应用,这样的原创 2016-05-07 10:46:58 · 2108 阅读 · 0 评论 -
SURF特征点检测
SURF算法是对SIFT算法的改进,其基本结构、步骤与SIFT相近,但具体实现的过程有所不同。SURF算法的优点是速度远快于SIFT且稳定性好。1.构建Hessian矩阵,构造高斯金字塔尺度空间SIFT采用的是DoG图像,而SURF采用的是Hessian矩阵行列式近似值图像。每个像素点都可以求出一个H矩阵,H矩阵 有一个判别式,判别式的值是H矩阵的特征值,可以利用判定结果的符号将所有点原创 2016-05-07 10:29:53 · 3534 阅读 · 0 评论 -
SIFT特征点检测
SIFT特征点检测算法是一种检测局部特征的算法,它是通过求一幅图中的特征点及其有关scale和orientation的描述子得到特征并进行图像特征点匹配。SIFT算法具有如下一些特点:1.SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性;2.独特性好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配;原创 2016-05-07 09:53:15 · 6835 阅读 · 0 评论