深度学习 前向后向传播公式推导

本文详细介绍了深度学习中前向传播和反向传播的公式推导,包括单个样本的标量表示和多个样本的向量表示。在单个样本的情况下,讨论了权重更新的计算过程;而在多个样本时,展示了如何计算权重矩阵、偏置项以及输入数据的梯度。通过这些公式,可以理解如何在实际中应用梯度下降进行参数优化。
摘要由CSDN通过智能技术生成

假设,该样本3种特征,分别为 x1 , x2 , x3 ,

1.1单个样本,用标量表示

那么对于向前传播的公式可以得到:
z=w1x1+w2x2+w3x3+b ,

激活函数用( activation function ):
a=g(z) (其中 g 可以为 relu 或者 sigmoid 函数)

损耗函数( cost function ):
(a,y)=ylog(a)(1y)log(1a)

反向传播需要用到的导数可以为:

dz=dag(z)
dw1=x1dz
dw3=x2dz
dw2=x3dz
db=dz
dx1=w1dz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值