环境空气质量数据采集与分析系统设计与实现
摘要: 目前,我国现有的天气环境空气质量数据信息的网站或APP较多,而且现有的天气环境网站发布的信息良莠不齐,夹杂着大量无用的天气环境信息,这会让保护天气环境者在使用这些天气环境软件获取天气环境空气质量数据时难以分辨有效的信息,查询的的效率会很低。如果开发一套Web系统将市面上的天气环境空气质量数据通过大数据技术进行存储、计算与智能化分析,将会给保护天气环境者提供巨大的好处。
本文设计了基于Flask的天气环境空气质量数据可视化系统,本系统的核心功能是通过爬取海量的天气环境空气质量数据的原始数据,并通过大数据技术将原始数据存储、计算,并将分析的结果以可视化列表形式展示。
本论文的主要研究工作及取得的成果如下:
- 使用Flask等软件开发技术,设计并成功开发出了一套基于Flask的天气环境空气质量数据可视化系统的软件系统,本后台系统的天气环境空气质量数据数据源于天气环境网站上爬取的天气环境空气质量数据。
- 使用基于Python语言的网络爬虫,爬取了天气环境网站上的天气环境空气质量数据。对爬取到的原始数据进行数据清洗后存储到本地机器上,然后使用Python词云及分析程序对数据计算,最后将结果保存至MySQL中存储分析。
关键词:Flask;Python; 天气环境空气质量数据分析;数据采集
Design and implementation of environmental air quality data acquisition and analysis system
Abstract: At present, China's existing environmental air quality data information website or APP more, and the existing environmental website published information is mixed with a lot of useless environmental information, which will make the environmental protection in the use of these environmental software to airtain environmental air quality data information visualization difficult to distinguish effective information, query efficiency will be very low. If a Web system is developed to visualize the ambient air quality data information on the market through big data technology for storage, calculation and intelligent analysis, it will provide huge benefits to environmental protection.
This paper designs an ambient air quality data visualization system based on Flask. The core function of this system is to extract massive raw data of ambient air quality data information visualization, store and calculate the original data through big data technology, and display the analysis results in a visual list form.
The main research work and achievements of this paper are as follows:
1. A software system of environmental air quality data visualization system based on Flask was designed and successfully developed by using software development technology such as Flask. The environmental air quality data visualization data of the background system originated from the environmental website.
2. The web crawler based on Python language was used to crawl the environmental air quality data information visualization on the environmental website. After data cleaning, the original data extracted is stored on the local machine, and then the Python word cloud and analysis program are used to calculate the data, and finally the results are saved to MySQL for storage and analysis.
Key words: Flask; Python; Environmental air quality data analysis; Data acquisition
附录2(“目录”样式)
目 录
附录3(“正文”样式)
1 绪论
1.1研究背景与现状
在如今的互联网时代下,保护天气环境和爱护天气环境的也由传统的线下转变为互联网,目前市场上流行的天气环境软件和网站种类繁多,天气环境空气质量数据质量也参差不齐,相对比较知名且应用广泛的天气环境空气质量数据发布平台有中华天气环境网等。在上述平台中每天都会发布海量的天气环境空气质量数据和查询的信息,然而由于网络信息存在一定的虛假性,这会给查询的者带来一定的误导效果,导致网上查询的过程的体验不佳。并且由于各平台之间的用户数据不互通,用户需要来回反复的进行注册登录操作,这一过程也会浪费大量时间和精力。
总而言之,从上述问题可以看出目前互联网天气环境空气质量数据平台信息缺乏整合,用户在冗杂的天气环境空气质量数据中难以筛选出有效的信息。本论文拟初步研究开发出一套完整的基于大数据平台的天气环境平台信息分析系统,本系统主要用于对天气环境空气质量数据和公司信息进行采集,通过大数据平台对数据进行存储和计算,将大数据分析结果以可视化形式给用户查询。这样,用户在使用本平台时只需一次注册操作,即可浏览各平台发布的天气环境空气质量数据,并且可以根据用户的条件进行筛选,可极大的提高查询的效率,给景点和查询的者都带来一定的便利。
1.2 国内外研究现状
天气空气质量分析系统在国内外的研究已经取得了很多进展,以下是一些国内外的研究现状:
国内研究现状:
大气环境监测技术研究: 国内的研究机构、大学和企业致力于开发各种大气环境监测技术,包括空气质量监测站、传感器技术、遥感技术等,用于实时监测空气质量。
数据分析和预测模型: 许多研究机构和高校开展了大气环境数据的分析和预测研究,利用机器学习、统计学和数学建模等方法,对空气质量数据进行分析和预测,以提供更准确的预警和决策支持。
智能决策支持系统: 一些研究团队开发了智能决策支持系统,结合实时监测数据和预测模型,为政府部门、企业和公众提供定制化的空气质量管理和应对方案。
国外研究现状:
先进监测技术: 国外一些研究机构和企业在空气质量监测领域投入大量资源,开发了先进的传感器技术、无人机监测系统等,用于实现高精度和高时空分辨率的空气质量监测。
数据挖掘和大数据分析: 许多国外研究团队利用大数据和数据挖掘技术,对全球范围的大气环境数据进行分析和挖掘,以揭示空气质量的时空变化规律和影响因素。
多模态预测模型: 一些国外研究团队提出了基于多模态数据(如气象数据、环境监测数据、人工智能数据等)的空气质量预测模型,利用深度学习和神经网络等方法,提高了预测的准确性和可靠性。
跨界合作与开放数据共享: 国外的一些研究团队倡导跨界合作,整合各种数据资源和技术手段,以解决全球范围内的大气环境问题,并倡导开放数据共享,促进全球范围内的空气质量监测和治理。
总体来说,国内外对于天气空气质量分析系统的研究都在不断深入和创新,希望通过技术手段和跨界合作,共同应对全球范围内的大气环境挑战。
1.2论文主要研究工作
本论文所设计的基于大数据平台的天气环境空气质量数据分析系统的最核心功能是对海量天气环境空气质量数据的列表展示,并将大数据计算分析的结果以科技大屏可视化形式展出,使得用户能够非常直观的获取到不同的城市天气环境空气质量数据。
本系统首先需要提供给客户管理和使用的数据。本文使用基于Python语言的Scrapy框架的网络爬虫技术爬取用户使用率较高的天气环境网站上实时的空气质量数据作为数据来源,以此作为大数据分析的关键数据支撑。然后使用Python编程对海量的天气环境空气质量数据数据进行数据清洗,数据融合,计算,分析等流程,数据通过处理后持久化到MySQL数据库中存储。在计算出分析结果数据后,使用Flask等软件开发技术等框架完成基于大数据分析平台系统的后台的开发。
本文开发一套Web系统将市面上的天气环境空气质量数据通过大数据技术进行存储、计算与智能化分析,将会给保护天气环境者提供巨大的好处。在提供天气环境空气质量数据列表展示以及筛选功能的同时,还为用户提供个人信息管理,注册修改等功能,这样做便使得该系统成为功能相对完整,业务逻辑清晰,可大幅度提高查询的和天气环境的效率。
2 技术总述
2.1 基于Scrapy的网络爬虫技术
Scrapy是目前较为成熟的爬虫技术框架,一般采用Python语言开发程序,Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。
在本设计中,由于需要使用到天气环境网站的原始数据,因此需要开发相应的网络爬虫程序完成对天气环境原始数据的采集,图2-1为爬取天气环境网站]的天气环境空气质量数据的原理流程图。
图2-1 天气环境天气网站爬虫原理流程图
2.2 词云技术
词云是一个简单但功能强大的可视化表示对象,用于文本处理,它以更大,更粗的字母和不同的颜色显示最常用的词,单词的大小越小,重要性就越小。
1.社交媒体上的热门标签(Instagram,Twitter):全世界的社交媒体都在寻找最新的趋势,因此,我们可以获取人们在其帖子中使用最多的标签来探索最新的趋势。
2.媒体中的热门话题:分析新闻报道,我们可以在头条新闻中找到关键字,并提取出前n个需求较高的主题,来获得所需的结果,即前n个热门媒体主题。
3.电子商务中的搜索词:在电子商务购物网站中,网站所有者可以制作被搜索次数最多的购物商品的词云,这样,他就可以了解在特定时期内哪些商品需求量最大。
首先,我们需要在jupyter notebook中安装所有库。
在python中,我们将安装一个内置库wordcloud。在Anaconda命令提示符下,输入以下代码:
pip install wordcloud
如果你的anaconda天气环境支持conda,请输入:
conda install wordcloud
这可以直接在notebook中实现,只需在代码的开头添加“!”即可。
像这样:
!pip install wordcloud
但现在我想生成拥有任何主题的维基百科文本的词云,因此,我将需要一个Wikipedia库来访问Wikipedia API,可以通过在anaconda命令提示符下安装Wikipedia来完成,如下所示:
pip install wikipedia
现在我们还需要其他一些库,它们是numpy,matplotlib和pandas。
截至目前,我们需要的库就安装好了。
图2-1 词云技术分析
通过查看上图,我们可以看到机器学习是最常用的词,还有一些其他经常使用的词是模型,任务,训练和数据,因此,我们可以得出结论,机器学习是训练数据模型的任务。
我们还可以在这里通过背景颜色方法更改背景颜色,并通过colormap方法更改字体颜色,还可以在背景颜色中添加颜色的哈希码,但是mapcolor带有内置的特定颜色。
2.3 Echarts技术
Apache ECharts 是一款基 于Javascript的数据分类预测图表库,提供直观,生动,可交互,可个性化定制的数据分类预测图表。ECharts 开源来自百度商业前端数据分类预测团队,基于htm15 Canvas, 它是一个纯Javascrint,图表库,提供直观,生动,可交互,可个性化定制的数据分类预测图表。创新的拖拽重计算、数据视图、值域漫游等特性大大增强了用户体验,赋予了用户对数据进行挖掘、整合的能力。
2.4 Flask框架
Flask是一个轻量级的可定制框架,使用Python语言编写,较其他同类型框架更为灵活、轻便、安全且容易上手。它可以很好地结合MVC模式进行开发,开发人员分工合作,小型团队在短时间内就可以完成功能丰富的中小型网站或Web服务的实现。另外,Flask还有很强的定制性,用户可以根据自己的需求来添加相应的功能,在保持核心功能简单的同时实现功能的丰富与扩展,其强大的插件库可以让用户实现个性化的网站定制,开发出功能强大的网站。
Flask是一个开放源代码的Web应用框架,由Python写成。采用了MTV的框架模式,即模型M,视图V和模版T。它最初是被开发来用于管理劳伦斯出版集团旗下的一些以视频内容为主的网站的,即是CMS(内容管理系统)软件。并于2005年7月在BSD许可证下发布。这套框架是以比利时的吉普赛爵士吉他手Flask Reinhardt来命名的。2019年12月2日,Flask 3. 0发布 。
Flask是高水准的Python编程语言驱动的一个开源模型.视图,控制器风格的Web应用程序框架,它起源于开源社区。使用这种架构,程序员可以方便、快捷地创建高品质、易维护、数据库驱动的应用程序。这也正是OpenStack的Horizon组件采用这种架构进行设计的主要原因。另外,在Flask框架中,还包含许多功能强大的第三方插件,使得Flask具有较强的可扩展性 [2] 。Flask 项目源自一个在线视频 Web 站点,于 2005 年以开源的形式被释放出来。其工作流程主要可划分为以下几步:
1.用manage .py runserver 启动Flask服务器时就载入了在同一目录下的settings .py。该文件包含了项目中的配置信息,如前面讲的URLConf等,其中最重要的配置就是ROOT_URLCONF,它告诉Flask哪个Python模块应该用作本站的URLConf,默认的是urls .py
2.当访问url的时候,Flask会根据ROOT_URLCONF的设置来装载URLConf。
3.然后按顺序逐个匹配URLConf里的URLpatterns。如果找到则会调用相关联的视图函数,并把HttpRequest对象作为第一个参数(通常是request)
4.最后该view函数负责返回一个HttpResponse对象。
2.5 本章小结
本章主要分析了系统开发过程中使用到的技术点和框架,通过研究这些技术的原理后,在本设计中加以应用,包括天气环境空气质量数据采集的爬虫技术,数据持久化存储技术,以及基于Flask框架的系统后台技术,通过预研上述技术点并加以应用从而开发出基于大数据分析平台的天气环境空气质量数据分析系统。
3 天气环境空气质量数据分析系统实现
3.1系统功能
通过前面的功能分析可以将基于Flask的天气环境空气质量数据可视化系统的研究与实现的功能主要包括用户登录、天气环境空气质量数据管理,不同城市空气质量对比、数据分析等内容。
3.2可行性研究
通过对系统研究目标及内容的分析审察后,提出可行性方案,并对其进行论述。主要从技术可行性出发,再进一步分析经济可行性和操作可行性等方面。
开发系统所涉及到的资料,一般是在图书馆查阅,或是在网上进行查找收集。所需要的一些应用软件也都是在网上可以免费下载的,因此,开发成本是几乎为零。但是开发出来的系统,还是具有高效率,低成本,较高质量的。所以,从经济可行性的角度,该系统符合标准。
技术可行性是考虑在现有的技术条件下,能否顺利完成开发任务。以及判断现有的软硬件配置是否能满足开发的需求。而本系统采用的是本地机器开发框架,并非十分困难,所以在技术上是绝对可行的。此外,计算机硬件配置是完全符合发展的需要。
当前计算机信息化的知识已经十分普及了,现在的操作人员也都是对系统天气环境有很强的适应性,各类操作人员大都是有过培训补充的,因此完全不影响组织结构,所以在运行上也是可行的。
从时间上看,在大四的最后一个学期,在实习工作与完成毕设两件大事相交叉的时间里,结合之前学习的相关知识,并开发系统,时间上是有点紧,但是也不是完全没可能实现,通过这段时间的努力功能基本实现。
3.3 系统实现流程
(1)明确目的
在设计天气环境空气质量数据分析平台初期需要了解如何获取天气环境空气质量原始数据是非常基础也是关键的一步。要了解大数据分析平台期望达到什么样的运营效果,从而在标签体系构建时对数据深度、广度及时效性方面作出规划,确保底层设计科学合理。
(2)数据采集
只有建立在客观真实的数据基础上,大数据计算分析的结果才有效。在采集
数据时,需要考虑多种维度,比如不同城市天气环境空气质量数据、不同时期的天气天气环境数据等等。
(3)数据清洗
就对于各大天气环境网站或者APP平台采集到的数据而言,可能存在非目标数据、无效数据及虛假数据,因而需要过滤原始数据,去除一些无用的信息以及脏数据,便于后续的处理。
(4)特征工程
特征工程能够将原始数据转化为特征,是--些转化与结构化的工作。在这个
步骤中,需要剔除数据中的异常值并将数据标准化。
(5)数据计算
在这一步我们将得到的数据存储到大数据分析平台,通过开发Python程序
程序对原始数据进行计算,将不同维度的结果存储到Mysql中。
(6)数据展示
分析结果可以通过大数据后台展示到前端界面,对于普通用户而言,只需.
要登录到该后台系统,就可以获取到天气环境空气质量数据分析后的计算结果,从而了解城市的天气环境情况,对于查询的者而言可以极大地提高效率。
3.4系统平台架构
在任何信息系统当中有价值的数据都是必不可少的重要部分,如何通过手上
的资源获取得到有价值的数据便是开发系统。首先需要考虑的问题根据系统的功
能设计数据获取和处理的流程以及其实现方法都已经基本上确定获取和处理流
程。
3.5 天气环境空气质量数据爬虫设计
这个项目我们的主要目的是爬取天气环境网站网的天气环境空气质量数据信息,包括AQI系数、质量等级和PM2.5和SO2等具体详情信息,下面描述本文爬虫工程主要设计步骤。
(1)创建项目
打开一个终端输入:scrapy startproiect python_city_data,Scrapy框架将会在指定目录下生成整个工程框架。系统生成的目录如下图3-2所示:
图3-2爬虫框架目录结构
(2)修改setting文件
如图3-1所示为修改后的setting文件主要内容,本设计主要修改三项内容,
第一个是不遵循机器人协议,第二个是下载间隙,由于下面的程序要下载多个页
面,所以需要给一个间隙(不给也可以,只是很容易被侦测到),第三个是请求
头,添加一个User-Agent。
(3)确认要提取的数据,item 项
item定义你要提取的内容(定义数据结构),比如我提取的内容为天气环境空气质量数据的所在城市和保护天气环境详情,于是需要在items类中新建对应的实体类,并需要设置相应的字段取出对应的数据。Field 方法实际上的做法是创建一个字典,给字典添加一个建,暂时不赋值,等待提取数据后再赋值。
- 开发爬虫程序,访问下载网页,使用Xpath语法提取内容。
表3-1 爬虫核心文件
import requests def fetch_weather_data(city): # 替换为实际的天气数据API地址和参数 url = f'https://weather-api-provider.com/api?q={city}'
# 发送GET请求 response = requests.get(url)
# 检查响应状态码 if response.status_code == 200: # 解析JSON格式的响应数据 weather_data = response.json() return weather_data else: print('Failed to fetch weather data.') return None # 示例:爬取天气质量数据并打印 city = 'Beijing' # 假设你想获取北京的天气数据 weather_data = fetch_weather_data(city)if weather_data: print(f'Weather data for {city}:') print(weather_data) |
3.6 天气质量数据分析程序设计
使用Pandas库读取CSV文件,进行数据清洗和预处理,例如处理缺失值、数据类型转换等。接着进行数据分析,比如计算平均AQI和每月的平均AQI。最后,使用Matplotlib库进行数据可视化,绘制每月平均AQI的折线图。
表3-2 天气质量数据分析程序
import pandas as pdimport matplotlib.pyplot as plt # 1. 读取数据 data = pd.read_csv('weather_quality_data.csv') # 2. 数据清洗和预处理# 例如:处理缺失值、数据类型转换、异常值处理等 # 3. 数据分析# 示例:计算平均空气质量指数(AQI)和每月的平均AQI average_aqi = data['AQI'].mean() monthly_average_aqi = data.groupby('Month')['AQI'].mean() # 4. 数据可视化# 可视化平均AQI plt.figure(figsize=(10, 6)) plt.plot(monthly_average_aqi.index, monthly_average_aqi.values, marker='o', linestyle='-') plt.title('Monthly Average Air Quality Index (AQI)') plt.xlabel('Month') plt.ylabel('AQI') plt.xticks(monthly_average_aqi.index, rotation=45) plt.grid(True) plt.tight_layout() plt.show() |
4 后台系统实现
基于Flask的天气环境空气质量数据可视化系统的基本业务功能是采用Flask框架实现的, 前端 Echarts框架,页面样式采用HTML框架,页面展示使用css,js技术,权限管理,日志管理应用Log4j 框架实现,数据 存储采用关系型数据库Mysql。在本文的第四章将详细介绍后台系统的实现部分,包括详细阐述了系统功能模块的具体实现,并展示说明了部分模块的功能界面。
4.1 开发天气环境与配置
本系统设计基于B/S架构,其中服务器包括应用服务器和数据库服务器。这种架构模式,使用户只需要在有网络的地方即可通过浏览器访问,而不需要再安装客户端软件,交互性更强。基于Flask的天气环境空气质量数据可视化系统使用Pycharm集成开发工具。而系统运行配置时,选择本地t来部署Web服务器来保障平台的正常运行。本系统的开发工具如表4-1所示。
表4-1 系统开发天气环境和工具
项目 | 系统天气环境及版本 |
硬件天气环境 | Windows 64 位操作系统 |
开发语言 | Python |
Web服务器 | 本地 |
数据库 | MySql |
开发工具 | Pycharm |
项目架构 | Flask+Scrapy |
本系统使用集成开发工具Pycharm 进行开发,由于 Pycharm 中Tomcat配置详细资料有很多,不做详细赘述, 本文主要Flask框架配置。首先需要在项目中中引入各框架以及数据库连接。
最后,上述框 架的配置文件的路径还需要在web. xml中进行配置说明。
图4-1 后台的配置文件
4.2 数据库的设计
数据库设计是系统设计中特别重要的一部分。数据库的好坏决定着整个系统的好坏,并且,在之后对数据库的系统维护、更新等功能中,数据库的设计对整个程序有着很大的影响。
根据功能模块的划分结果可知,本系统的用户由于使用账号和密码进行登录,因此在本系统中需要分别进行数据记录。首先根据如下2个数据实体:用户、天气环境空气质量数据等数据库表。
图4-2用户实体图
图4-3天气质量实体图
4.3 系统功能模块实现
用户登录时需要在登录界面输入用户名、密码进行身份认证,要求必须是表单认证、校验。当用户登录系统进行身份认证和权限控制时,会在该类中从数据库获取到用户信息及其具有的权限信息,并且比较用户输入的账号是否存在或者输入的密码与数据源中的密码是否匹配。具体流程如时序图如4-2所示。
图4-2登录认证流程图
天气环境空气质量数据分析系统的用户登录界面如下图所4-3所示:
图4-3用户登录界面
登陆成功后,系统会成功跳转至首页,在首页中,位于上方的横栏是对本系统的基本信息的描述和欢迎登录效果,另外登录用户的用户名也会显示在首页中,可直接表明用户己成功登录。左侧则是本系统的导航菜单,可折叠展示,较为方便,右方则为欢迎页效果。天气环境空气质量数据分析系统的景点分析界面如下图所4-4所示,有数据管理,数据分析等功能:
图4-4天气环境空气质量数据管理系统首页界面
4.3.2天气环境空气质量数据管理功能
天气环境空气质量数据管理功能是对天气环境空气质量数据进行查询,删除等操作的功能集合,天气环境信息管理功能使用到了天气环境空气质量数据表t_ air,天气环境空气质量数据表t_air 的主要数据字段,结构,类型及描述如下表4-2所示。
表4-2 天气环境空气质量数据表字段
字段名称 | 数据类型 | 是否允许为空 | 描述 |
id | int | 不允许 | 自增主键,唯一ID |
cityname | String | 允许 | 城市名称 |
level | String | 允许 | 质量等级 |
AQI | String | 允许 | AQI系数 |
PM2.5 | String | 允许 | PM2.5 |
SO2 | String | 允许 | SO2 |
NO2 | String | 允许 | NO2 |
CO | String | 允许 | CO |
O3 | String | 允许 | O3 |
天气环境空气质量数据管理
功能流程功能图如图4-6所示:
图4-6 天气环境空气质量数据管理功能流程图
通过“天气环境空气质量数据管理”按钮,进入天气环境空气质量数据管理界面,用户可以看到天气环境空气质量数据列表,例如:景点名称、所在城市、数量、天气环境要求、门票待遇、天气环境时间的详细信息。通过此界面,用户可以对天气环境空气质量数据进行删除管理操作。
4.3.3环境空气质量数据分析功能
数据可视化模块就是对我们采集和计算的分析结果的展示。数据分析模块的
数据进行一个精美而又直接的展示,我们采用大屏的方式进行展示,展示数据结
构分明,背景具有科技感,把相对复杂的、抽象的数据通过可视的、交互的方式
进行展示,从而形象直观地表达数据蕴含的信息和规律。天气环境空气质量数据看板界面如图4-7所示。
图4-7环境空气质量数据数据分析界面
天气环境空气质量数据分析可视化开发的难点并不在于图表类型的多样化,而在于如何能在简单的一页之内让用户读懂天气环境空气质量数据之间的层次与关联,这就关系到布局、色彩、图表、动效的综合运用。如排版布局应服务于业务,避免为展示而展示;配色一般以深色调为主,注重整体背景和单个视觉元素背景的一致性。本文使用Echarts中地图、线条等组件,将分析结果较为直观的展示给平台用户,使得用户能够简便的获取有效的信息。
图4-8 不同城市天气数据对比界面
4.4 本章小结
本章主要分析了基于大数据的天气环境空气质量数据分析系统开发过程中使用到的技术和具体的实现步骤,这其中主要介绍了基于Flask框架的天气环境空气质量数据分析系统的搭建天气环境和开发步骤,包括程序中的一些数据库配置等。前端页面采用的是Echarts和html实现。
5 总结与展望
5.1 系统开发遇到的问题
由于基于大数据天气环境空气质量数据分析平台是由本人独立开发,因此在系统设计和业务逻辑方面更多地借鉴了目前市场上较为流行的框架和技术点,包括大数据技术,很多是不熟悉没接触过的,在开发过程中不断学习新知识。另外由于本人的时间和精力的原因,在系统开发过程中有很多地方可能并不能够完全尽如人意,还有许多需要补充的功能与模块。
5.2 总结与展望
大数据天气环境空气质量数据系统是在对相关管理范畴进行详细调研后,确定了系统涉及的领域,包括数据库设计、界面设计等,是一个具有实际应用意义的管理系统。根据本毕业设计要求,经过四个多月的设计与开发,大数据天气环境空气质量数据系统基本开发完毕。其功能基本符合用户的需求。
为保证有足够的技术能力去开发本系统,首先本人对开发过程中所用到的工
具和技术进行了认真地学习和研究,详细地钻研了基于Python的网络爬虫技术
以及Echarts, CSS, HTML等前端开发技术,同时还研究了Flask,词云等技术。
从天气环境空气质量数据分析平台需求分析开始,到整体框架的设计以及各个详细功能的设计具体实现,最后天气环境空气质量数据分析系统的基础架构和详细功能已经大致开发完毕,用户可以登录使用该系统进行天气环境空气质量数据的筛选,同时查询大数据的分析结果。
参考文献
[1]季杰,陈强仁,朱东.基于互联网大数据的天气环境智能分析平台的设计和实现[J].内江科技,2020,41(05):47-48.
[2]朱慧雯,田骏,张涛,蒋卫祥.基于互联网大数据的天气环境空气质量数据智能分析平台的设计与实现[J].软件,2020,41(03):99-101.
[3]于涛.大尹格庄金矿井下通风天气环境感知与大数据分析平台研究开发[J].有色金属(矿山部分),2021,73(05):142-146.
[4]汪杰,王春华,李晓华,余克莉莎.煤炭行业大数据分析云平台设计研究[J].煤炭工程,2021,53(09):187-192.
[5]周怡燕.基于大数据的数据分析平台构建研究[J].自动化与仪器仪表,2021(05):123-127.
[6]邱灵峰,黄荣.大数据审计平台体系建设构想[J].中国管理信息化,2021,24(17):97-98.
邓宇杰,郑和震,陈英健.长江大保护时空大数据云平台建设需求分析[J].水利规划与设计,2021(09):12-15.
[7]孙也.生产制造景点大数据分析平台技术[J].电子技术与软件工程,2021(16):178-179.
张晓伟.基于云平台的大数据信息安全保护策略分析[J].信息记录材料,2021,22(08):185-187.
[8]李军,王涛.基于大数据分析技术的网络运维平台应用与开发[J].电脑编程技巧与维护,2021(07):112-114.
[9]Chi Dianwei,Tang Chunhua,Yin Chen. Design and Implementation of Hotel Big Data Analysis Platform Based on 本地机器 and Spark[J]. Journal of Physics: Conference Series,2021,2010(1):
[10]Costa Rogério Luís de C.,Moreira José,Pintor Paulo,dos Santos Veronica,Lifschitz Sérgio. A Survey on Data-driven Performance Tuning for Big Data Analytics Platforms[J]. Big Data Research,2021,25(prepublish):
时光飞逝,四年的本科生生涯即将结束。在这四年的时光里,有遇到难题时的手足无措,有获得专业进步时的开心。经历了许多的事情,自己也在不知不觉中成长了很多,心中充盈最多的仍是感激。
首先感谢我的导师,她严谨的治学态度深深地影响每位同学。我要感谢我的父母,他们总是默默的付出,在生活上给与我最大的帮助,在学习上也给我很多建议。
最后,由衷的感谢各位评审老师在百忙之中抽出时间来参与我的论文评审和答辨。