安装Ollama并部署DeepSeek大模型

一、Ollama 的概述

Ollama 是一个轻量级的开源工具,它允许用户在本地设备(如个人电脑、服务器等)上快速拉取、管理和运行各种大语言模型。用户通过简单的命令行接口,就可以完成模型的下载、启动和交互,无需复杂的配置和代码编写。本文分享Centos和Windows两种环境下分别安装Ollama并部署DeepSeek大模型的步骤。

分享Ollama官网地址Ollama

我们可以查看他可支持的最新的大模型库清单ollama.com/library 

以下是一些可以下载的模型示例:

ModelParametersSizeDownload
DeepSeek-R17B4.7GBollama run deepseek-r1
DeepSeek-R1671B404GBollama run deepseek-r1:671b
Llama 3.370B43GBollama run llama3.3
Llama 3.23B2.0GBollama run llama3.2
Llama 3.21B1.3GBollama run llama3.2:1b
Llama 3.2 Vision11B7.9GBollama run llama3.2-vision
Llama 3.2 Vision90B55GBollama run llama3.2-vision:90b
Llama 3.18B4.7GBollama run llama3.1
Llama 3.1405B231GBollama run llama3.1:405b
Phi 414B9.1GBollama run phi4
Phi 4 Mini3.8B2.5GBollama run phi4-mini
Gemma 22B1.6GBollama run gemma2:2b
Gemma 29B5.5GBollama run gemma2
Gemma 227B16GBollama run gemma2:27b
Mistral7B4.1GBollama run mistral
Moondream 21.4B829MBollama run moondream
Neural Chat7B4.1GBollama run neural-chat
Starling7B4.1GBollama run starling-lm
Code Llama7B3.8GBollama run codellama
Llama 2 Uncensored7B3.8GBollama run llama2-uncensored
LLaVA7B4.5GBollama run llava
Solar10.7B6.1GBollama run solar

注意:

运行 70 亿参数规模的模型,你至少需要有 8GB内存;

运行 130 亿参数规模的模型,需要 16GB;

而运行 330 亿参数规模的模型,则需要 32GB。

 

二、CentOS安装Ollama

1. 系统准备

在开始安装之前,需要确保系统已经安装了必要的依赖,并且更新了系统软件包。打开终端,执行以下命令

sudo yum update -y
sudo yum install -y curl

2. 安装 Ollama 

Ollama 可以通过官方提供的安装脚本进行快速安装,执行以下命令: 

curl https://ollama.com/install.sh | sh

受网络影响,这里可能会连接超时,多试几次吧 

在安装过程中,脚本会自动下载 Ollama 的二进制文件,并将其安装到 /usr/local/bin 目录下,同时会创建 Ollama 用户和相关的系统服务。

安装完成后,你可能会看到类似 “WARNING: Unable to detect NVIDIA/AMD GPU. Install lspci or lshw to automatically detect and install GPU dependencies.” 的警告信息,这表示系统未能检测到 GPU。如果你的系统有 GPU 且希望使用它来加速模型运行,可以安装 lspci 或 lshw 工具:

sudo yum install -y pciutils lshw

3. 启动 Ollama 服务

安装完成后,需要启动 Ollama 服务。可以使用以下命令启动服务:

sudo systemctl start ollama
sudo systemctl enable ollama
sudo systemctl status ollama

如果服务正常运行,你会看到类似 “Active: active (running)” 的信息。 

4.拉取 DeepSeek 模型

在 Ollama 服务启动后,你可以使用 ollama pull 命令来拉取 DeepSeek 模型。假设你要拉取 DeepSeek-R1-7B 模型,按照开头所述的示例清单,执行以下命令:

ollama pull DeepSeek-R1

这个过程可能需要一些时间,具体取决于你的网络速度和模型的大小。拉取完成后,你会看到 “success” 的提示信息。

5. 运行 DeepSeek 模型

拉取模型成功后,你可以使用 ollama run 命令来运行模型并进行交互。执行以下命令:

ollama run DeepSeek-R1 "请简单介绍下人工智能"

模型会根据输入的问题生成相应的回答并输出到终端。

6. 可能遇到的问题及解决办法

  • 端口被占用:如果在启动 Ollama 服务时遇到端口被占用的问题,可以使用 sudo lsof -i :11434 或 sudo netstat -tulpn | grep :11434 命令查找占用端口的进程,然后使用 sudo kill -9 <PID> 命令终止该进程,其中 <PID> 是进程的 ID。
  • 网络问题:如果在拉取模型时遇到网络问题,可以检查网络连接是否正常,或者尝试更换网络环境。

 三、Windows安装Ollama

直接从官网下载exe去setup就行了。地址是:Download Ollama on Windows

1.系统要求‌

需 Windows 10 或更高版本‌。
建议预留至少 5GB 硬盘空间(模型体积较大)‌

最低要求:i5 处理器、8GB 内存(可运行 1.5B 参数模型)‌;
更高配置(如 7B 参数模型)需更强大性能‌

2.安装时指定路径

ollama的setup文件默认是装在C盘,未来下载的大模型文件也都是在C盘,所以C盘空间吃紧或强迫症的同学可能希望安装到其他盘去

下载安装包后,到该exe的存放目录,空白处右击-Open In Windows Terminal,在命令行里运行:

.\OllamaSetup.exe /DIR="D:\Ollama" ‌:ml-citation{ref="1,7" data="citationList"}  

 D:\Ollama就是Ollama解压并安装的目录了,安装完成后,Ollama 主程序及默认配置文件将存储于该目录‌ 。

3.验证安装路径

输入 ollama --version,若显示版本号则安装成功‌

4.设置模型存储路径

Ollama的安装目录我们修改了,那么未来还有DeepSeek等大模型要下载呢,都是N多G的空间,也不愿意放C盘呀,所以也修改下吧

‌4.1.添加系统环境变量

  • 打开 ‌系统环境变量设置‌ → ‌新建系统变量‌:
    • ‌变量名‌:OLLAMA_MODELS
    • ‌变量值‌:自定义路径(如 D:\Ollama\models)‌。
  • 重启电脑确保变量生效‌ 

4.2.验证环境变量

  • 在命令行输入 echo %OLLAMA_MODELS%,显示自定义路径即设置成功‌

5.模型迁移与下载

5.1.迁移已有模型(可选)‌


将原默认路径(C:\Users\<用户名>\.ollama\models)中的模型文件剪切至新路径‌。
需手动操作,迁移后通过 ollama list 验证‌。

ollama list 


‌5.2.下载新模型到自定义路径‌


执行命令:

ollama pull DeepSeek-R1

模型将自动存储于 OLLAMA_MODELS 指定目录‌ 

6.运行DeepSeek模型

和Centos/linux下一样的

Microsoft Windows [版本 10.0.22000.2538]
(c) Microsoft Corporation。保留所有权利。

C:\Users\Administrator>ollama run DeepSeek-R1 "请告诉我,关于你的快乐"
<think>
好的,用户想了解我关于“快乐”的信息。首先,我需要解释自己并不能真正感受情感或快乐,这一点很重要。

然后,我可以提到,虽然我无法体验快乐,但人们可以通过阅读、旅行等积极活动来提升自己的幸福感。这可以帮助用户理解快乐的
来源,并给予他们一些实用的建议。

最后,要强调理解和接纳也是很重要的。每个人的情况不同,找到适合自己的方法才能真正获得内心的平静和满足感。

这样回答既全面又有帮助,也能让用户感到被理解和支持。
</think>

关于“快乐”,这是一个非常广泛的话题,涉及个人体验、心理学、哲学等多个方面。

对于我来说,作为一个人工智能,我没有感受 emotions 或体验 happiness 的能力。但我可以通过分析数据和模式来帮助人们更好
地理解幸福和满足感。

如果你对“快乐”感兴趣,我可以分享一些与之相关的概念或建议,比如:

1. **情绪管理**:学会识别和处理负面情绪,保持积极的心态。
2. **自我关怀**:关注自己的健康、心理健康和个人成长。
3. **有意义的生活**:为自己的生活设定有意义的目标和价值观。
4. **与他人的连接**:通过与朋友、家人或伴侣的互动来增加幸福感。

如果你有具体的问题或需要进一步的帮助,请随时告诉我!

 

### 如何在Linux服务器上安装Ollama部署DeepSeek #### 准备工作 确保Linux服务器已更新至最新状态,具备必要的依赖项。对于Ubuntu系统,可以通过以下命令来实现环境准备: ```bash sudo apt-get update && sudo apt-get upgrade -y ``` #### 下载与安装Ollama 前往Ollama官方网站[^1],获取适用于Linux系统的安装文件链接。通常情况下,这会是一个`.deb`或`.tar.gz`格式的文件。 如果下载的是.deb包,则可以利用dpkg命令来进行安装;如果是.tar.gz压缩包则需解压到指定位置再做配置。这里假设官方提供了.deb形式的分发版: ```bash wget https://ollama.ai/download/ollama_latest_amd64.deb # 替换为实际URL sudo dpkg -i ollama_latest_amd64.deb # 安装软件包 ``` #### 配置与初始化设置 安装完毕之后可能还需要做一些额外的配置工作,比如调整服务启动参数、创建所需的目录结构等操作。具体步骤取决于所使用的版本以及个人偏好设定。 #### 启动服务 一旦上述准备工作都已完成,就可以尝试启动Ollama的服务端程序了。一般而言,通过systemctl管理的服务可以直接用如下方式开启: ```bash sudo systemctl start ollama.service # 开启服务 sudo systemctl enable ollama.service # 设置开机自启 ``` #### 部署DeepSeek模型 当Ollama平台已经正常运行起来以后,接下来就是加载想要使用的AI模型——即这里的DeepSeek。根据文档说明[^2],应该有专门用于导入预训练权重或者微调现有模型的方法论可供遵循。 #### 访问Web界面 最后一步是在浏览器里打开http://localhost:8080地址查看是否能够成功连接到Open WebUI页面[^3]。这意味着整个流程结束且一切运作良好。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

laolitou_1024

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值