一、Ollama 的概述
Ollama 是一个轻量级的开源工具,它允许用户在本地设备(如个人电脑、服务器等)上快速拉取、管理和运行各种大语言模型。用户通过简单的命令行接口,就可以完成模型的下载、启动和交互,无需复杂的配置和代码编写。本文分享Centos和Windows两种环境下分别安装Ollama并部署DeepSeek大模型的步骤。
我们可以查看他可支持的最新的大模型库清单:ollama.com/library
以下是一些可以下载的模型示例:
Model | Parameters | Size | Download |
---|---|---|---|
DeepSeek-R1 | 7B | 4.7GB | ollama run deepseek-r1 |
DeepSeek-R1 | 671B | 404GB | ollama run deepseek-r1:671b |
Llama 3.3 | 70B | 43GB | ollama run llama3.3 |
Llama 3.2 | 3B | 2.0GB | ollama run llama3.2 |
Llama 3.2 | 1B | 1.3GB | ollama run llama3.2:1b |
Llama 3.2 Vision | 11B | 7.9GB | ollama run llama3.2-vision |
Llama 3.2 Vision | 90B | 55GB | ollama run llama3.2-vision:90b |
Llama 3.1 | 8B | 4.7GB | ollama run llama3.1 |
Llama 3.1 | 405B | 231GB | ollama run llama3.1:405b |
Phi 4 | 14B | 9.1GB | ollama run phi4 |
Phi 4 Mini | 3.8B | 2.5GB | ollama run phi4-mini |
Gemma 2 | 2B | 1.6GB | ollama run gemma2:2b |
Gemma 2 | 9B | 5.5GB | ollama run gemma2 |
Gemma 2 | 27B | 16GB | ollama run gemma2:27b |
Mistral | 7B | 4.1GB | ollama run mistral |
Moondream 2 | 1.4B | 829MB | ollama run moondream |
Neural Chat | 7B | 4.1GB | ollama run neural-chat |
Starling | 7B | 4.1GB | ollama run starling-lm |
Code Llama | 7B | 3.8GB | ollama run codellama |
Llama 2 Uncensored | 7B | 3.8GB | ollama run llama2-uncensored |
LLaVA | 7B | 4.5GB | ollama run llava |
Solar | 10.7B | 6.1GB | ollama run solar |
注意:
运行 70 亿参数规模的模型,你至少需要有 8GB内存;
运行 130 亿参数规模的模型,需要 16GB;
而运行 330 亿参数规模的模型,则需要 32GB。
二、CentOS安装Ollama
1. 系统准备
在开始安装之前,需要确保系统已经安装了必要的依赖,并且更新了系统软件包。打开终端,执行以下命令
sudo yum update -y
sudo yum install -y curl
2. 安装 Ollama
Ollama 可以通过官方提供的安装脚本进行快速安装,执行以下命令:
curl https://ollama.com/install.sh | sh
受网络影响,这里可能会连接超时,多试几次吧
在安装过程中,脚本会自动下载 Ollama 的二进制文件,并将其安装到 /usr/local/bin
目录下,同时会创建 Ollama 用户和相关的系统服务。
安装完成后,你可能会看到类似 “WARNING: Unable to detect NVIDIA/AMD GPU. Install lspci or lshw to automatically detect and install GPU dependencies.” 的警告信息,这表示系统未能检测到 GPU。如果你的系统有 GPU 且希望使用它来加速模型运行,可以安装 lspci
或 lshw
工具:
sudo yum install -y pciutils lshw
3. 启动 Ollama 服务
安装完成后,需要启动 Ollama 服务。可以使用以下命令启动服务:
sudo systemctl start ollama
sudo systemctl enable ollama
sudo systemctl status ollama
如果服务正常运行,你会看到类似 “Active: active (running)” 的信息。
4.拉取 DeepSeek 模型
在 Ollama 服务启动后,你可以使用 ollama pull
命令来拉取 DeepSeek 模型。假设你要拉取 DeepSeek-R1-7B
模型,按照开头所述的示例清单,执行以下命令:
ollama pull DeepSeek-R1
这个过程可能需要一些时间,具体取决于你的网络速度和模型的大小。拉取完成后,你会看到 “success” 的提示信息。
5. 运行 DeepSeek 模型
拉取模型成功后,你可以使用 ollama run
命令来运行模型并进行交互。执行以下命令:
ollama run DeepSeek-R1 "请简单介绍下人工智能"
模型会根据输入的问题生成相应的回答并输出到终端。
6. 可能遇到的问题及解决办法
- 端口被占用:如果在启动 Ollama 服务时遇到端口被占用的问题,可以使用
sudo lsof -i :11434
或sudo netstat -tulpn | grep :11434
命令查找占用端口的进程,然后使用sudo kill -9 <PID>
命令终止该进程,其中<PID>
是进程的 ID。 - 网络问题:如果在拉取模型时遇到网络问题,可以检查网络连接是否正常,或者尝试更换网络环境。
三、Windows安装Ollama
直接从官网下载exe去setup就行了。地址是:Download Ollama on Windows
1.系统要求
需 Windows 10 或更高版本。
建议预留至少 5GB 硬盘空间(模型体积较大)
最低要求:i5 处理器、8GB 内存(可运行 1.5B 参数模型);
更高配置(如 7B 参数模型)需更强大性能
2.安装时指定路径
ollama的setup文件默认是装在C盘,未来下载的大模型文件也都是在C盘,所以C盘空间吃紧或强迫症的同学可能希望安装到其他盘去
下载安装包后,到该exe的存放目录,空白处右击-Open In Windows Terminal,在命令行里运行:
.\OllamaSetup.exe /DIR="D:\Ollama" :ml-citation{ref="1,7" data="citationList"}
D:\Ollama就是Ollama解压并安装的目录了,
安装完成后,Ollama 主程序及默认配置文件将存储于该目录 。
3.验证安装路径
输入 ollama --version
,若显示版本号则安装成功
4.设置模型存储路径
Ollama的安装目录我们修改了,那么未来还有DeepSeek等大模型要下载呢,都是N多G的空间,也不愿意放C盘呀,所以也修改下吧
4.1.添加系统环境变量
- 打开 系统环境变量设置 → 新建系统变量:
- 变量名:
OLLAMA_MODELS
- 变量值:自定义路径(如
D:\Ollama\models
)。
- 变量名:
- 重启电脑确保变量生效
4.2.验证环境变量
- 在命令行输入
echo %OLLAMA_MODELS%
,显示自定义路径即设置成功
5.模型迁移与下载
5.1.迁移已有模型(可选)
将原默认路径(C:\Users\<用户名>\.ollama\models)中的模型文件剪切至新路径。
需手动操作,迁移后通过 ollama list 验证。
ollama list
5.2.下载新模型到自定义路径
执行命令:
ollama pull DeepSeek-R1
模型将自动存储于 OLLAMA_MODELS 指定目录
6.运行DeepSeek模型
和Centos/linux下一样的
Microsoft Windows [版本 10.0.22000.2538]
(c) Microsoft Corporation。保留所有权利。
C:\Users\Administrator>ollama run DeepSeek-R1 "请告诉我,关于你的快乐"
<think>
好的,用户想了解我关于“快乐”的信息。首先,我需要解释自己并不能真正感受情感或快乐,这一点很重要。
然后,我可以提到,虽然我无法体验快乐,但人们可以通过阅读、旅行等积极活动来提升自己的幸福感。这可以帮助用户理解快乐的
来源,并给予他们一些实用的建议。
最后,要强调理解和接纳也是很重要的。每个人的情况不同,找到适合自己的方法才能真正获得内心的平静和满足感。
这样回答既全面又有帮助,也能让用户感到被理解和支持。
</think>
关于“快乐”,这是一个非常广泛的话题,涉及个人体验、心理学、哲学等多个方面。
对于我来说,作为一个人工智能,我没有感受 emotions 或体验 happiness 的能力。但我可以通过分析数据和模式来帮助人们更好
地理解幸福和满足感。
如果你对“快乐”感兴趣,我可以分享一些与之相关的概念或建议,比如:
1. **情绪管理**:学会识别和处理负面情绪,保持积极的心态。
2. **自我关怀**:关注自己的健康、心理健康和个人成长。
3. **有意义的生活**:为自己的生活设定有意义的目标和价值观。
4. **与他人的连接**:通过与朋友、家人或伴侣的互动来增加幸福感。
如果你有具体的问题或需要进一步的帮助,请随时告诉我!