1. 项目背景与意义
随着酒店行业的蓬勃发展,酒店信息的采集与分析变得尤为重要。酒店行业的信息量大、数据复杂,如何通过合理的分析和可视化手段,为酒店管理者或消费者提供有价值的洞察,是一个值得深入探讨的课题。本项目基于 Python 和 Flask 框架,设计并实现了一个酒店数据分析与可视化平台。通过从数据库中提取酒店数据,并生成图形化的分析报告,帮助用户了解酒店市场的趋势、分布等信息。
2. 项目目标
本项目的目标是开发一个基于 Flask 和数据可视化的酒店数据分析系统,具备以下主要功能:
- 酒店数据存储与查询:通过数据库存储酒店信息,并使用 SQL 语句进行高效查询。
- 酒店数据分析:对酒店数据进行分析,如价格区间、酒店类型分布、酒店位置分布等。
- 数据可视化:使用图形化手段(如词云图、饼图等)展示分析结果。
- 用户认证与管理:提供用户注册和登录功能,确保系统的安全性。
- 交互式前端:通过 Flask 渲染动态网页,展示分析结果和可视化图表。
3. 技术栈
- Python 3.7:作为开发语言。
- Flask:Web 框架,用于构建后台服务。
- MySQL:数据库管理系统,用于存储酒店数据。
- pymysql:Python 与 MySQL 的连接库。
- jieba:中文分词库,用于文本分析。
- WordCloud:用于生成词云图。
- matplotlib:用于绘制可视化图表。
- Pillow (PIL):图像处理库,用于处理词云的遮罩图。
4. 项目设计与实现
4.1 数据库设计
酒店信息被存储在 MySQL 数据库的 hotelinfo
表中,包含以下字段:
id
:酒店的唯一标识符。title
:酒店名称。address
:酒店地址。cover
:酒店封面图片。overCenter
:酒店周边的主要地理中心。type
:酒店类型(如经济型、舒适型等)。tag
:酒店标签。start
:酒店评分。price
:酒店价格。description
:酒店描述。houseTypeList
:房型列表。commentList
:用户评论列表。
4.2 功能模块设计
- 用户认证模块:
- 使用 Flask 提供的
session
机制进行用户登录管理。 - 用户通过邮箱和密码登录,登录成功后进入系统首页。
- 数据查询与分析模块:
- 使用
querys
函数与数据库交互,查询酒店信息。 - 通过对酒店价格、类型、评分等数据的分析,提供各类统计结果,如价格区间、酒店类型比例、评分分布等。
- 数据可视化模块:
- 使用
WordCloud
库生成酒店描述文本的词云图,显示酒店最常见的描述词。 - 使用
matplotlib
绘制柱状图、饼图等,展示酒店的评分分布、价格分布等。
- 前端展示模块:
- 使用 Flask 提供的模板功能(
render_template
),将分析结果动态展示在网页上。 - 提供用户友好的界面,展示酒店列表、词云图和各种统计图表。
开发文档
1. 项目概述
本项目是一个基于 Python 和 Flask 的酒店数据分析与可视化系统,旨在通过对酒店信息的采集、分析与展示,帮助用户更好地理解和决策酒店行业的趋势和特点。通过数据库存储酒店数据,结合 Flask 提供的 Web 服务,用户可以查看酒店数据的分析结果,并生成词云图和其他统计图表。
2. 项目结构
├── surface.py # Flask 后端应用,启动 Flask 服务器 ├── app.py # 主程序,包含路由和视图函数 ├── hotelinfo.sql # 数据库结构和初始数据 ├── static # 静态文件夹,包含 CSS、JS 和图片等静态资源 ├── templates # HTML 模板文件夹,用于渲染动态网页 ├── utils # 工具函数文件夹,包含数据库查询与数据处理逻辑 │ ├── query.py # 数据库查询模块 │ ├── getData.py # 数据分析模块,处理和分析酒店数据 │ └── getHomeData.py # 获取酒店数据模块 ├── word_cloud_picture.py # 生成词云图的脚本 └── README.md # 项目说明文件
3. 功能模块
本项目实现了以下几个主要功能模块:
- Flask 后端:
- 通过 Flask 框架搭建 Web 服务,实现用户认证、数据展示等功能。
- 用户通过登录页面进行身份验证,成功后进入主页面查看数据分析结果。
- 数据库模块:
- 使用
pymysql
连接 MySQL 数据库,查询酒店数据并进行分析。 hotelinfo.sql
文件定义了数据库结构,包括酒店的名称、地址、类型、价格等信息。
- 数据分析与可视化模块:
- 对数据库中的酒店数据进行统计分析,包括价格分布、类型统计、评论分布等。
- 使用
WordCloud
生成酒店描述词云图,帮助用户更好地理解酒店特点。 - 使用
matplotlib
绘制统计图表(如柱状图、饼图等)展示分析结果。
- 用户认证模块:
- 提供登录和注册功能,确保系统的安全性。
- 登录后通过
session
存储用户状态,确保访问权限。
4. 主要功能实现
4.1 Flask 后端与路由定义(app.py
)
app.py
是 Flask 应用的核心文件,包含了应用的路由和视图函数。代码实现如下:
/login
路由:用户通过输入邮箱和密码进行登录,验证成功后进入主页。
@app.route("/login", methods=['GET', 'POST']) def login(): if request.method == 'POST': request.form = dict(request.form) def filter_fns(item): return request.form['email'] in item and request.form['password'] in item users = querys('select * from user', [], 'select') login_success = list(filter(filter_fns, users)) if not len(login_success): return '账号或密码错误' session['email'] = request.form['email'] return redirect('/home', 301) else: return render_template('./login.html')
/registry
路由:提供注册页面,让新用户能够创建账户。
@app.route("/registry", methods=['GET', 'POST']) def registry(): if request.method == 'GET': return render_template('registry.html')
4.2 数据库查询模块(query.py
)
query.py
中封装了与数据库交互的功能,通过 querys
函数执行 SQL 查询:
def querys(sql, params, type='no_select'): params = tuple(params) cursor.execute(sql, params) if type != 'no_select': data_list = cursor.fetchall() conn.commit() return data_list else: conn.commit() return '数据库语句执行成功'
- 该函数支持执行查询操作(
select
)和非查询操作(如更新、插入等)。 type
参数决定了执行的 SQL 类型,查询时返回结果,非查询操作时返回执行成功的消息。
4.3 数据分析与获取模块(getData.py
)
getData.py
中的 getHomePageData
函数主要负责数据分析,获取酒店的价格区间、类型分布等信息:
def getHomePageData(): maxPrice = 0 maxType1 = 0 maxType2 = 0 maxResult = '' for i in allData: if maxPrice < int(i[8]): maxPrice = int(i[8]) if i[5] == '舒适型': maxType1 += 1 else: maxType2 += 1 if maxType1 > maxType2: maxResult = '舒适型' else: maxResult = '经济型' priceTopHotel = list(sorted(allData, key=lambda x: int(x[8]), reverse=True)) return priceTopHotel
maxPrice
:找出价格最高的酒店。maxType1
和maxType2
:分别统计舒适型和经济型酒店的数量。priceTopHotel
:将酒店数据按价格排序,输出价格排名前列的酒店。
4.4 词云生成模块(word_cloud_picture.py
)
word_cloud_picture.py
负责从数据库获取酒店描述数据,并生成词云图:
def get_desc_img(field, targetImgSrc, resImgSrc): con = connect(host='localhost', user='root', password='root', database='hotelinfo', port=3306, charset='utf8mb4') cursor = con.cursor() sql = f"select {field} from hotelinfo" cursor.execute(sql) data = cursor.fetchall() text = '' for i, item in enumerate(data): text += item[0] cursor.close() con.close() cut = jieba.cut(text) # 使用jieba进行分词 string = ' '.join(cut) # 拼接分词结果为一个字符串 img = Image.open(targetImgSrc) # 打开遮罩图片 img_arr = np.array(img) # 将图片转化为数组 wc = WordCloud( background_color='white', mask=img_arr, font_path='STHUPO.TTF' ) wc.generate_from_text(string) # 生成词云
- 该函数从数据库获取某个字段(如酒店描述)的文本数据,使用
jieba
进行分词,并生成对应的词云图。 - 词云图的样式由
targetImgSrc
提供的遮罩图片决定。
5. 项目部署与运行
- 安装依赖: 在项目根目录下,运行以下命令安装所需的 Python 库:
pip install flask pymysql wordcloud jieba matplotlib pillow
- 启动 Flask 应用: 运行以下命令启动 Flask 服务:
python app.py
- 访问项目: 启动 Flask 后,打开浏览器并访问
http://127.0.0.1:5000
即可访问酒店数据分析系统。 - 数据库配置: 在 MySQL 中创建一个数据库
hotelinfo
,并运行hotelinfo.sql
文件以创建表和初始数据。
6. 项目优化与扩展
- 增加数据源:通过爬虫或第三方 API 获取更多酒店数据,丰富分析内容。
- 性能优化:对数据库查询进行优化,提升查询效率,特别是在数据量大的情况下。
- 可视化优化:增加更多的图表类型,支持交互式图表,增强用户体验。
- 前端优化:优化用户界面,增加数据筛选功能,提升可用性和美观度。
7. 总结
本项目通过 Flask 构建了一个酒店数据分析与可视化平台,使用了 MySQL 存储数据,结合 Python 数据分析与可视化库(如 WordCloud
和 matplotlib
),帮助用户分析酒店市场的动态和趋势。通过生成词云图和其他统计图表,项目为用户提供了直观的酒店数据洞察。
具体功能效果:
【【大数据分析项目选题参考】基于python+flask+mysql的酒店数据可视化分析(项目演示+功能精讲)】 【大数据分析项目选题参考】基于python+flask+mysql的酒店数据可视化分析(项目演示+功能精讲)_哔哩哔哩_bilibili