基于python+flask+mysql的酒店数据可视化分析

1. 项目背景与意义

随着酒店行业的蓬勃发展,酒店信息的采集与分析变得尤为重要。酒店行业的信息量大、数据复杂,如何通过合理的分析和可视化手段,为酒店管理者或消费者提供有价值的洞察,是一个值得深入探讨的课题。本项目基于 Python 和 Flask 框架,设计并实现了一个酒店数据分析与可视化平台。通过从数据库中提取酒店数据,并生成图形化的分析报告,帮助用户了解酒店市场的趋势、分布等信息。

2. 项目目标

本项目的目标是开发一个基于 Flask 和数据可视化的酒店数据分析系统,具备以下主要功能:

  1. 酒店数据存储与查询:通过数据库存储酒店信息,并使用 SQL 语句进行高效查询。
  2. 酒店数据分析:对酒店数据进行分析,如价格区间、酒店类型分布、酒店位置分布等。
  3. 数据可视化:使用图形化手段(如词云图、饼图等)展示分析结果。
  4. 用户认证与管理:提供用户注册和登录功能,确保系统的安全性。
  5. 交互式前端:通过 Flask 渲染动态网页,展示分析结果和可视化图表。
3. 技术栈
  • Python 3.7:作为开发语言。
  • Flask:Web 框架,用于构建后台服务。
  • MySQL:数据库管理系统,用于存储酒店数据。
  • pymysql:Python 与 MySQL 的连接库。
  • jieba:中文分词库,用于文本分析。
  • WordCloud:用于生成词云图。
  • matplotlib:用于绘制可视化图表。
  • Pillow (PIL):图像处理库,用于处理词云的遮罩图。
4. 项目设计与实现
4.1 数据库设计

酒店信息被存储在 MySQL 数据库的 hotelinfo 表中,包含以下字段:

  • id:酒店的唯一标识符。
  • title:酒店名称。
  • address:酒店地址。
  • cover:酒店封面图片。
  • overCenter:酒店周边的主要地理中心。
  • type:酒店类型(如经济型、舒适型等)。
  • tag:酒店标签。
  • start:酒店评分。
  • price:酒店价格。
  • description:酒店描述。
  • houseTypeList:房型列表。
  • commentList:用户评论列表。
4.2 功能模块设计
  1. 用户认证模块
  • 使用 Flask 提供的 session 机制进行用户登录管理。
  • 用户通过邮箱和密码登录,登录成功后进入系统首页。
  1. 数据查询与分析模块
  • 使用 querys 函数与数据库交互,查询酒店信息。
  • 通过对酒店价格、类型、评分等数据的分析,提供各类统计结果,如价格区间、酒店类型比例、评分分布等。
  1. 数据可视化模块
  • 使用 WordCloud 库生成酒店描述文本的词云图,显示酒店最常见的描述词。
  • 使用 matplotlib 绘制柱状图、饼图等,展示酒店的评分分布、价格分布等。
  1. 前端展示模块
  • 使用 Flask 提供的模板功能(render_template),将分析结果动态展示在网页上。
  • 提供用户友好的界面,展示酒店列表、词云图和各种统计图表。

开发文档

1. 项目概述

本项目是一个基于 Python 和 Flask 的酒店数据分析与可视化系统,旨在通过对酒店信息的采集、分析与展示,帮助用户更好地理解和决策酒店行业的趋势和特点。通过数据库存储酒店数据,结合 Flask 提供的 Web 服务,用户可以查看酒店数据的分析结果,并生成词云图和其他统计图表。

2. 项目结构
├── surface.py             # Flask 后端应用,启动 Flask 服务器
├── app.py                 # 主程序,包含路由和视图函数
├── hotelinfo.sql          # 数据库结构和初始数据
├── static                 # 静态文件夹,包含 CSS、JS 和图片等静态资源
├── templates              # HTML 模板文件夹,用于渲染动态网页
├── utils                  # 工具函数文件夹,包含数据库查询与数据处理逻辑
│   ├── query.py           # 数据库查询模块
│   ├── getData.py         # 数据分析模块,处理和分析酒店数据
│   └── getHomeData.py     # 获取酒店数据模块
├── word_cloud_picture.py  # 生成词云图的脚本
└── README.md              # 项目说明文件
3. 功能模块

本项目实现了以下几个主要功能模块:

  1. Flask 后端
  • 通过 Flask 框架搭建 Web 服务,实现用户认证、数据展示等功能。
  • 用户通过登录页面进行身份验证,成功后进入主页面查看数据分析结果。
  1. 数据库模块
  • 使用 pymysql 连接 MySQL 数据库,查询酒店数据并进行分析。
  • hotelinfo.sql 文件定义了数据库结构,包括酒店的名称、地址、类型、价格等信息。
  1. 数据分析与可视化模块
  • 对数据库中的酒店数据进行统计分析,包括价格分布、类型统计、评论分布等。
  • 使用 WordCloud 生成酒店描述词云图,帮助用户更好地理解酒店特点。
  • 使用 matplotlib 绘制统计图表(如柱状图、饼图等)展示分析结果。
  1. 用户认证模块
  • 提供登录和注册功能,确保系统的安全性。
  • 登录后通过 session 存储用户状态,确保访问权限。
4. 主要功能实现
4.1 Flask 后端与路由定义(app.py

app.py 是 Flask 应用的核心文件,包含了应用的路由和视图函数。代码实现如下:

  • /login 路由:用户通过输入邮箱和密码进行登录,验证成功后进入主页。
@app.route("/login", methods=['GET', 'POST'])
def login():
    if request.method == 'POST':
        request.form = dict(request.form)

        def filter_fns(item):
            return request.form['email'] in item and request.form['password'] in item

        users = querys('select * from user', [], 'select')
        login_success = list(filter(filter_fns, users))
        if not len(login_success):
            return '账号或密码错误'

        session['email'] = request.form['email']
        return redirect('/home', 301)

    else:
        return render_template('./login.html')
  • /registry 路由:提供注册页面,让新用户能够创建账户。
@app.route("/registry", methods=['GET', 'POST'])
def registry():
    if request.method == 'GET':
        return render_template('registry.html')
4.2 数据库查询模块(query.py

query.py 中封装了与数据库交互的功能,通过 querys 函数执行 SQL 查询:

def querys(sql, params, type='no_select'):
    params = tuple(params)
    cursor.execute(sql, params)
    if type != 'no_select':
        data_list = cursor.fetchall()
        conn.commit()
        return data_list
    else:
        conn.commit()
        return '数据库语句执行成功'
  • 该函数支持执行查询操作(select)和非查询操作(如更新、插入等)。
  • type 参数决定了执行的 SQL 类型,查询时返回结果,非查询操作时返回执行成功的消息。
4.3 数据分析与获取模块(getData.py

getData.py 中的 getHomePageData 函数主要负责数据分析,获取酒店的价格区间、类型分布等信息:

def getHomePageData():
    maxPrice = 0
    maxType1 = 0
    maxType2 = 0
    maxResult = ''
    for i in allData:
        if maxPrice < int(i[8]):
            maxPrice = int(i[8])
        if i[5] == '舒适型':
            maxType1 += 1
        else:
            maxType2 += 1
    if maxType1 > maxType2:
        maxResult = '舒适型'
    else:
        maxResult = '经济型'

    priceTopHotel = list(sorted(allData, key=lambda x: int(x[8]), reverse=True))
    return priceTopHotel
  • maxPrice:找出价格最高的酒店。
  • maxType1maxType2:分别统计舒适型和经济型酒店的数量。
  • priceTopHotel:将酒店数据按价格排序,输出价格排名前列的酒店。
4.4 词云生成模块(word_cloud_picture.py

word_cloud_picture.py 负责从数据库获取酒店描述数据,并生成词云图:

def get_desc_img(field, targetImgSrc, resImgSrc):
    con = connect(host='localhost', user='root', password='root', database='hotelinfo', port=3306, charset='utf8mb4')
    cursor = con.cursor()
    sql = f"select {field} from hotelinfo"
    cursor.execute(sql)
    data = cursor.fetchall()
    text = ''
    for i, item in enumerate(data):
        text += item[0]
    cursor.close()
    con.close()

    cut = jieba.cut(text)  # 使用jieba进行分词
    string = ' '.join(cut)  # 拼接分词结果为一个字符串
    img = Image.open(targetImgSrc)  # 打开遮罩图片
    img_arr = np.array(img)  # 将图片转化为数组
    wc = WordCloud(
        background_color='white',
        mask=img_arr,
        font_path='STHUPO.TTF'
    )
    wc.generate_from_text(string)  # 生成词云
  • 该函数从数据库获取某个字段(如酒店描述)的文本数据,使用 jieba 进行分词,并生成对应的词云图。
  • 词云图的样式由 targetImgSrc 提供的遮罩图片决定。
5. 项目部署与运行
  1. 安装依赖: 在项目根目录下,运行以下命令安装所需的 Python 库:
pip install flask pymysql wordcloud jieba matplotlib pillow
  1. 启动 Flask 应用: 运行以下命令启动 Flask 服务:
python app.py
  1. 访问项目: 启动 Flask 后,打开浏览器并访问 http://127.0.0.1:5000 即可访问酒店数据分析系统。
  2. 数据库配置: 在 MySQL 中创建一个数据库 hotelinfo,并运行 hotelinfo.sql 文件以创建表和初始数据。
6. 项目优化与扩展
  1. 增加数据源:通过爬虫或第三方 API 获取更多酒店数据,丰富分析内容。
  2. 性能优化:对数据库查询进行优化,提升查询效率,特别是在数据量大的情况下。
  3. 可视化优化:增加更多的图表类型,支持交互式图表,增强用户体验。
  4. 前端优化:优化用户界面,增加数据筛选功能,提升可用性和美观度。
7. 总结

本项目通过 Flask 构建了一个酒店数据分析与可视化平台,使用了 MySQL 存储数据,结合 Python 数据分析与可视化库(如 WordCloudmatplotlib),帮助用户分析酒店市场的动态和趋势。通过生成词云图和其他统计图表,项目为用户提供了直观的酒店数据洞察。

具体功能效果:

【【大数据分析项目选题参考】基于python+flask+mysql的酒店数据可视化分析(项目演示+功能精讲)】 【大数据分析项目选题参考】基于python+flask+mysql的酒店数据可视化分析(项目演示+功能精讲)_哔哩哔哩_bilibili

源码:基于python+flask+mysql的酒店数据可视化分析

基于Python FlaskMySQL的图书可视化分析系统是一个用于分析图书数据的web应用程序。该系统可以帮助图书管理员或书店经营者更好地理解和利用他们的图书资源。 该系统的主要功能包括数据导入、数据可视化数据分析。首先,用户可以将图书数据导入MySQL数据库中,以便后续的数据分析可视化。用户可以手动输入图书信息,或通过导入Excel表格等方式批量导入数据。 在数据可视化方面,系统可以生成多种图表以展示图书数据的各种特征。比如,柱状图可以显示各个图书类别的数量分布,饼状图可以展示不同作者图书的比例,折线图可以展示图书销量随时间的变化趋势等等。通过这些图表,用户可以直观地了解图书的特点和趋势。 数据分析是该系统的另一个重要功能。系统可以根据用户的需求进行数据分析,并给出相应的结果。例如,用户可以查询图书销量最高的前几本书,并给出详细排名和销量数据;用户还可以查询某个时间段内图书销售额的统计信息,如总销售额、平均销售额等。 此外,系统还提供了一些实用的功能,如图书搜索和图书推荐。用户可以根据关键词进行图书搜索,系统将返回与关键词相关的图书信息。图书推荐功能可以根据用户的兴趣和偏好,自动推荐一些相关的图书给用户。 总之,基于Python FlaskMySQL的图书可视化分析系统能够帮助用户更好地理解和利用图书资源。它提供了丰富的数据可视化数据分析功能,使得用户能够通过直观的图表和统计结果更好地了解图书的特点和趋势。同时,实用的功能如图书搜索和图书推荐也能提升用户的使用体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源码空间站TH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值