Shared Matting 算法核心思想

Shared Sampling for Real-Time Alpha Matting 2010 (Eduardo S. L. Gastal and Manuel M. Oliveira)


一、问题描述(我的理解)

    从背景中抠出前景,过渡地带做半透明处理。

    alpha matting 认为图像由前景和背景两个图层组成:

                                  I = alpha * F + (1 - alpha) * B

其中F为前景,B为背景,alpha是0到1之间的系数。

    alpha matting 就是要估计出所有像素的 (alpha, F, B)。

    已知条件为:给定图像,trimap(粗略标记出前景、背景和不确定区域的label图)

    根据已知(alpha, F, B)的像素集,估计未知部分。

二、核心思路

    对于未知像素,F和B可由其附近的已知像素估计出。从附近的已知像素中挑选出最合适的几个像素,结成(前景-背景)对子,再由它们估计出最终的F、B。然后就可以估算alpha了。(具体细节不完全是这样,这只是核心思想)

    目标函数:关于什么是最合适的前景、背景候选像素,作者提出了复杂的目标函数(公式7)

    搜索过程:之所以叫 shared matting ,是因为在选择(前景-背景)候选集的时候,并不是每个未知像素都搜索以自己为中心的整个圆形区域。而是把圆分成了很多扇形,相邻像素搜索不重叠的扇形区域。例如下图中,不同像素搜索不同颜色的区域。避免了大面积搜索,同时由于相邻像素的 (alpha, F, B)值近似,因此将相邻像素的搜索结果(候选集)拿来共用,共同估计出当前像素的(alpha, F, B)。


核心是为了减少计算量。

    后处理:为了更好看一些,作者在得到候选集后,又进行了refinement和smoothing,才得到最终的估计值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值