最短路模板

最短路

Dijkstra算法(常用)

·有重边的情况下尽量用邻接表存图

·记得处理第一个加入集合的点

·Dijkstra算法没法处理负权边

基础版本

  1. void dijkstra(int s){//记得处理第一个加入集合的点   
  2.     for(int i=1;i<=n;i++)dis[i]=inf;  
  3.     dis[s]=0;  
  4.     for(int i=1;i<=n;i++)  
  5.     {  
  6.         int k=0;  
  7.         for(int j=1;j<=n;j++)  
  8.             if(!vis[j]&&(k==0 || dis[j]<dis[k]))  
  9.                 k=j;  
  10.         vis[k]=1;  
  11.         for(int j=1;j<=n;j++){  
  12.             if(!vis[j]&&dis[k]+a[k][j]<dis[j])  
  13.                 dis[j]=dis[k]+a[k][j];  
  14.         }  
  15.     }  
  16. }  

优化版本(优先队列)

  1. struct element{  
  2.     int v,w;  
  3.     friend bool operator < (element a,element b){  
  4.         return a.w>b.w;  
  5.     }  
  6. };  
  7. struct node{  
  8.     int v,w,next;  
  9. }e[maxn*6];  
  10.   
  11. void adde(int u,int v,int w){  
  12.     e[++cnt].v=v;  
  13.     e[cnt].w=w;  
  14.     e[cnt].next=head[u];  
  15.     head[u]=cnt;  
  16. }  
  17.   
  18. void dijkstra(int s){  
  19.     priority_queue<element> q;  
  20.     memset(dis,inf,sizeof(dis));  
  21.     element k;  
  22.     q.push((element){s,0});  
  23.     dis[s]=0;  
  24.     while(!q.empty()){  
  25.         k =q.top();  
  26.         int v=k.v,w=k.w;  
  27.         q.pop();  
  28.         if(vis[v])continue;//这条边已经加入集合中   
  29.         vis[v]=1;  
  30.         dis[v]=w;  
  31.         for(int i=head[v];i!=0;i=e[i].next){//最短边对应点的每条边都入队列   
  32.             q.push((element){e[i].v,e[i].w+w});  
  33.         }  
  34.     }  
  35. }  

 

Bellman-Ford(负权最短路算法)

·此算法最大优势是处理负边权,判断负环(正环)

·至多执行n-1次

·用数组+结构体存图,因为是遍历边而不是点

·复杂度O(ne),适用于稀疏图

  1. struct edge  
  2. {  
  3.     long long x,y;  
  4.     long long cost;  
  5. };  
  6. edge v[3*N];  
  7. long long dis[N];  
  8. bool Bellman_Ford()  
  9. {  
  10.     for(int i=1;i<=n;++i)  
  11.         dis[i]=(i==s? 0:MAX);//初始化  
  12.     for(int i=1;i<n;++i)  
  13.         for(int j=1;j<=m;++j)  
  14.         {  
  15.             if(dis[v[j].y]>dis[v[j].x]+v[j].cost)//松弛,因为是有向图,方向不能反  
  16.                 dis[v[j].y]=dis[v[j].x]+v[j].cost;  
  17.         }  
  18.     bool flag=1;//标记有无负环  
  19.     for(int i=1;i<=m;++i)  
  20.         if(dis[v[i].y]>dis[v[i].x]+v[i].cost)//松弛是否成功  
  21.         {  
  22.             flag=0;//成功则有负环  
  23.             break;  
  24.         }  
  25.     return flag;  
  26. }  

 

SPFA算法

·对Ford算法的优化

·处理负环正环

非递归方式

  1. bool SPFA()  
  2. {  
  3.     queue<int> q;//队列  
  4.     memset(dis,127/3,sizeof(dis));//初始化一个很大的数  
  5.     dis[s]=0;//原点最短路是0  
  6.     q.push(s);//原点入队  
  7.     vis[s]=1;//标记入队  
  8.     while(!q.empty())//队列不空说明没跑完  
  9.     {  
  10.         int k=q.front();//取出队首  
  11.         q.pop();  
  12.         vis[k]=0;//擦去标记  
  13.         ++cnt[k];//统计次数  
  14.         if(cnt[k]>=n)//如果超过n-1说明有负环  
  15.             return 0;//报错  
  16.         for(int i=head[k];i!=0;i=e[i].next)//邻接表遍历相连的边  
  17.             if(dis[e[i].v]>dis[k]+e[i].w)//如果可以松弛  
  18.             {  
  19.                 dis[e[i].v]=dis[k]+e[i].w;//松弛  
  20.                 if(!vis[e[i].v])//如果被松弛的点不在队列里  
  21.                 {  
  22.                     vis[e[i].v]=1;//标记入队  
  23.                     q.push(e[i].v);//入队  
  24.                 }  
  25.             }  
  26.     }  
  27.     return 1;//顺利完成  
  28. }  

 

递归方式

  1. bool SPFA(int u)  
  2. {  
  3.     vis[u]=1;  
  4.     for(int k=f[u];k;k=e[k].next)//遍历后面的整个路径  
  5.     {  
  6.         int v=e[k].v,w=e[k].w;  
  7.         if(d[u]+w<d[v])//能松弛  
  8.         {  
  9.             d[v]=d[u]+w;  
  10.             if(!vis[v])//不重复  
  11.                 if(!SPFA(v))//如果后面的路径有重复的  
  12.                     return 0;//有负环  
  13.             else  
  14.                 return 0;//重复了,直接说明有负环  
  15.         }  
  16.     }  
  17.     vis[u]=0;//回溯  
  18.     return 1;//没有负环  
  19. }  

 

Floyd算法(容易被卡)

·唯一的多源最短路算法

·思想是DP

·外层枚举中间点,内层枚举起点,最内层枚举终点

基本模板

  1. //提前将邻接矩阵存在dis数组里,其他不连通的地方初始化成无穷大  
  2. for(int k=1;k<=n;++k)//枚举中间点  
  3.     for(int i=1;i<=n;++i)//枚举起点  
  4.         if(i!=k)//节省时间,如果一样就不往下走  
  5.             for(int j=1;j<=n;++j)//枚举终点  
  6.                 if(i!=j&&j!=k)//继续判断,如果有一样的就不往下走  
  7.                     dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);//状态转移方程,也就是所谓的松弛操作  

 

扩展例题

洛谷P1119 灾后重建

题意:每个道路有排序的修建时间,询问多个时间点的s到t的最短路

题解:正好可以用Floyd的思想解决,每修好一次村子,跑一遍内层循环,

dis[0][i][j] 是原始邻接矩阵数据

状态转移方程:

dis[k][i][j]=min(dis[k−1][i][j],dis[k−1][i][k]+dis[k−1][k][j])

  1. for(;t[k]<=w&&k<=n;++k)//如果询问的天数没有被处理到就以在k以前修好的村庄为中间点跑Floyd  
  2.             for(int i=1;i<=n;++i)  
  3.                 if(i!=k)  
  4.                     for(int j=1;j<=n;++j)  
  5.                         if(i!=j&&j!=k)  
  6.                             dis[i][j]=dis[j][i]=min(dis[i][j],dis[i][k]+dis[k][j]);//板子  
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值