Elasticsearch 8.X 向量检索和普通检索能否实现组合检索?如何实现?

文章讲述了在Elasticsearch中使用向量搜索时遇到的问题,如复合条件查询的限制,以及如何通过FilteredkNNsearch和hybridsearch解决。作者详细介绍了创建索引、数据插入和不同查询方法的实验过程,强调了官方推荐的FilteredkNNsearch在结合内容过滤和向量搜索中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、企业级实战问题

向量组合条件查询,报 [vector] malformed query, expected [END_OBJECT] but found [FIELD_NAME] 错误,

向量查询是不支持复合条件查询吗?

GET /my_index/_search
{
  "size":2,
  "_source": true, 
  "query": {
    "vector": {
      "my_vector": {
        "vector": [1, 1],
        "topk":2
      }
    },
    "bool": {
      "must": [
        {
          "match": {
            "my_label":"red"
          }
        }
      ]
    }
  }
}

——问题来自:死磕 Elasticsearch 知识星球

https://t.zsxq.com/18skX0ZS6

类似问题在社群里被问到 2 次以上了!

向量搜索热度不减,所以我们非常有必要将向量搜索和普通搜索结合方式给大家讲清楚。

换句话说,向量搜索和普通搜索的组合检索才是 Elasticsearch 作为向量数据库有别于其他新兴向量数据库的发力点所在。

更多向量检索的先验知识,推荐大家阅读:

  1. 干货 | 详述 Elasticsearch 向量检索发展史

  2. 高维向量搜索:在 Elasticsearch 8.X 中利用 dense_vector 的实战探索

  3. Elasticsearch:普通检索和向量检索的异同?

  4. Elasticsearch 8.X “图搜图”实战

2、一边实战,一边验证

如下所有验证都是在 Elasticsearch 8.11.0 集群环境下完成的。

2.1 步骤 1: 创建索引

首先,通过PUT image-index 请求,创建了一个名为 image-index 的索引,并定义了其映射。

这个映射指定了索引中文档将包含的字段及其类型:

  • image-vector:一个类型为dense_vector的字段,用于存储 ** 3 维 ** 向量数据。

  • title:一个text类型的字段,用于存储图像的标题。

  • file-type:一个keyword类型的字段,用于存储文件类型,如"jpeg"、"png"、"gif"等。

  • my_label:另一个text类型的字段,可以用于存储任何标签信息,如颜色标签"red"、"blue"等。

PUT image-index
{
  "mappings": {
    "properties": {
      "image-vector": {
        "type": "dense_vector",
        "dims": 3
      },
      "title": {
        "type": "text"
      },
      "file-type": {
        "type": "keyword"
      },
      "my_label": {
        "type": "text"
      }
    }
  }
}

2.2 步骤 2: 批量插入数据

使用 POST /image-index/_bulk 请求,批量插入了多个文档到 image-index 索引。

每个文档包含了一个向量、标题、文件类型和标签。

这些文档反映了不同的图像信息,每个图像都有自己的向量表示、标题、文件类型和颜色标签。

POST image-index/_bulk
{ "index": {} }
{ "image-vector": [-5, 9, -12], "title": "Image A", "file-type": "jpeg", "my_label": "red" }
{ "index": {} }
{ "image-vector": [10, -2, 3], "title": "Image B", "file-type": "png", "my_label": "blue" }
{ "index": {} }
{ "image-vector": [4, 0, -1], "title": "Image C", "file-type": "gif", "my_label": "red" }

2.3 步骤3:基于已有认知尝试组合检索

knn 检索咱讲过,翻一下官方文档即可。

https://www.elastic.co/guide/en/elasticsearch/reference/current/knn-search.html

官方示例如下:

POST image-index/_search
{
  "knn": {
    "field": "image-vector",
    "query_vector": [-5, 9, -12],
    "k": 10,
    "num_candidates": 100
  },
  "fields": [ "title", "file-type" ]
}

正好和我们的示例是契合的,我们先执行一下,如下图所示,全体数据均可召回。

ebb088086ed6dfa0a08a94c9470e1863.png

接下来,尝试再加上普通检索。

  • 并列组合

  • 大 BOOL 组合写

  • 组合到内部 咱们挨个试试:

2.3.1 尝试方式一:并列组合检索

可以执行,可以召回结果数据。

但结果没有达到预期,我们过滤的 red ,召回结果里有 blue。如下图所示。

结论:并列组合检索不可行。

40cef90c831e3d85912e5104f2a49f19.png
2.3.2 方式二:大 BOOL 组合写

按照常规逻辑的 bool 组合检索,结果发现:并不支持!

ad68faf02aee9413bf2238d3bca3b1a6.png
2.3.3 方式三:组合到内部

直接将过滤检索组合到 knn 内部,会报错,语法并不支持!

efb3ac42b58856b06b9fe47678690726.png

那,怎么办?

不能再猜了,看官方文档如何支持的?

https://www.elastic.co/guide/en/elasticsearch/reference/current/knn-search.html

官方文档给出两份答案。

2.3.4 官方答案一:Filtered kNN search

229fab49ce72dedacfb072861b51d444.png

如下实现语法的核心:knn 向量检索的里面加了 filter 过滤。

POST image-index/_search
{
  "knn": {
    "field": "image-vector",
    "query_vector": [
      54,
      10,
      -2
    ],
    "k": 5,
    "num_candidates": 50,
    "filter": {
      "match": {
        "my_label": "red"
      }
    }
  },
  "fields": [
    "title",
    "file-type",
    "my_label"
  ],
  "_source": false
}
39126ac1b36c403368b876a51b7b4f2a.png

针对前面提到问题的解决方案,这是咱们推荐的唯一正确的检索方式。

2.3.5 官方答案二:hybrid  search 混合检索

这个方式,就是咱们前面验证过的并列组合检索方式。结论和之前一致,并没有达到预期。

POST image-index/_search
{
  "query": {
    "match": {
      "my_label": {
        "query": "red"
      }
    }
  },
  "knn": {
    "field": "image-vector",
    "query_vector": [
      54,
      10,
      -2
    ],
    "k": 5,
    "num_candidates": 50,
    "boost": 0.1
  },
  "size": 10
}
77a7239554b923a1c0fd22827586ff9b.png

3、小结

查询方式千万种,我们需要敲定适合自己业务场景的方式。

基于已有的常识组合检索是一种方式,更快的方式是结合官方文档探究。

我们既定认为的检索方式,不见得是官方推荐的方式。

官方推荐的:Filtered kNN search 查询结合了基于内容的过滤和基于向量的搜索,旨在找出既符合文本查询条件(如标签为"red")又在向量空间中与给定查询向量最接近的文档。

这样的查询在处理如图像、文档或音频等多媒体内容时特别有用,其中内容可以通过向量(例如通过机器学习模型生成的嵌入)和元数据(如标签、标题或类型)来描述。

11aa0bfd96f722d3215d5b8ccb7f1c37.jpeg

通过这种方式,我们可以高效地找到既满足特定元数据条件又在内容上与给定示例相似的项目,这对于构建推荐系统、图像搜索引擎或其他需要结合内容和上下文信息进行精准检索的应用场景非常有价值。

此处后续版本可能有变化,更多细节,以最新版本的官方文档为准。


7 年+积累、 Elastic 创始人Shay Banon 等 15 位专家推荐的 Elasticsearch 8.X新书已上线

a3a52add35cd7746ed50980d45509e86.jpeg

更短时间更快习得更多干货!

和全球 近2000+ Elastic 爱好者一起精进!

elastic6.cn——ElasticStack进阶助手

7673a5c7207c8e726f8d2a0e4d8b84a3.gif

比同事抢先一步学习进阶干货!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

铭毅天下

和你一起,死磕Elastic!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值