赛事链接:https://challenge.xfyun.cn/topic/info?type=abstract-of-the-paper&ch=ZuoaKcY
医学领域的文献库中蕴含了丰富的疾病诊断和治疗信息,如何高效地从海量文献中提取关键信息,进行疾病诊断和治疗推荐,对于临床医生和研究人员具有重要意义。
实践任务
本任务分为两个子任务:
-
从论文标题、摘要作者等信息,判断该论文是否属于医学领域的文献。
-
从论文标题、摘要作者等信息,提取出该论文关键词。
第一个任务看作是一个文本二分类任务。机器需要根据对论文摘要等信息的理解,将论文划分为医学领域的文献和非医学领域的文献两个类别之一。第二个任务看作是一个文本关键词识别任务。机器需要从给定的论文中识别和提取出与论文内容相关的关键词。
数据解析
训练集与测试集数据为CSV格式文件,各字段分别是标题、作者和摘要。Keywords为任务2的标签,label为任务1的标签。训练集和测试集都可以通过pandas读取。
实践思路
任务一:文献领域分类
针对文本分类任务,可以提供两种实践思路,一种是使用传统的特征提取方法(如TF-IDF/BOW)结合机器学习模型,另一种是使用预训练的BERT模型进行建模。使用特征提取 + 机器学习的思路步骤如下:
-
数据预处理:首先,对文本数据进行预处理,包括文本清洗(如去除特殊字符、标点符号)、分词等操作。可以使用常见的NLP工具包(如NLTK或spaCy)来辅助进行预处理。
-
特征提取:使用TF-IDF(词频-逆文档频率)或BOW(词袋模型)方法将文本转换为向量表示。TF-IDF可以计算文本中词语的重要性,而BOW则简单地统计每个词语在文本中的出现次数。可以使用scikit-learn库的TfidfVectorizer或CountVectorizer来实现特征提取。
-
构建训练集和测试集:将预处理后的文本数据分割为训练集和测试集,确保数据集的样本分布均匀。
-
选择机器学习模型:根据实际情况选择适合的机器学习模型,如朴素贝叶斯、支持向量机(SVM)、随机森林等。这些模型在文本分类任务中表现良好。可以使用scikit-learn库中相应的分类器进行模型训练和评估。
-
模型训练和评估:使用训练集对选定的机器学习模型进行训练,然后使用测试集进行评估。评估指标可以选择准确率、精确率、召回率、F1值等。
-
调参优化:如果模型效果不理想,可以尝试调整特征提取的参数(如词频阈值、词袋大小等)或机器学习模型的参数,以获得更好的性能。
-
完整代码如下:
# 导入pandas用于读取表格数据
import pandas as pd
# 导入BOW(词袋模型),可以选择将CountVectorizer替换为TfidfVectorizer(TF-IDF(词频-逆文档频率)),注意上下文要同时修改,亲测后者效果更佳
from sklearn.feature_extraction.text import CountVectorizer
# 导入LogisticRegression回归模型
from sklearn.linear_model import LogisticRegression
# 过滤警告消息
from warnings import simplefilter
from sklearn.exceptions import ConvergenceWarning
simplefilter("ignore", category=ConvergenceWarning)
# 读取数据集
train = pd.read_csv('./基于论文摘要的文本分类与关键词抽取挑战赛公开数据/train.csv')
train['title'] = train['title'].fillna('')
train['abstract'] = train['abstract'].fillna('')
test = pd.read_csv('./基于论文摘要的文本分类与关键词抽取挑战赛公开数据/test.csv')
test['title'] = test['title'].fillna('')
test['abstract'] = test['abstract'].fillna('')
# 提取文本特征,生成训练集与测试集
train['text'] = train['title'].fillna('') + ' ' + train['author'].fillna('') + ' ' + train['abstract'].fillna('')+ ' ' + train['Keywords'].fillna('')
test['text'] = test['title'].fillna('') + ' ' + test['author'].fillna('') + ' ' + test['abstract'].fillna('')+ ' ' + train['Keywords'].fillna('')
vector = CountVectorizer().fit(train['text'])
train_vector = vector.transform(train['text'])
test_vector = vector.transform(test['text'])
# 引入模型
model = LogisticRegression()
# 开始训练,这里可以考虑修改默认的batch_size与epoch来取得更好的效果
model.fit(train_vector, train['label'])
# 利用模型对测试集label标签进行预测
test['label'] = model.predict(test_vector)
# 生成任务一推测结果
test[['uuid', 'Keywords', 'label']].to_csv('submit_task1.csv', index=None)