基于论文摘要的文本分类与关键词抽取挑战赛

赛事链接:https://challenge.xfyun.cn/topic/info?type=abstract-of-the-paper&ch=ZuoaKcY

医学领域的文献库中蕴含了丰富的疾病诊断和治疗信息,如何高效地从海量文献中提取关键信息,进行疾病诊断和治疗推荐,对于临床医生和研究人员具有重要意义。

实践任务

本任务分为两个子任务:

  1. 从论文标题、摘要作者等信息,判断该论文是否属于医学领域的文献。

  2. 从论文标题、摘要作者等信息,提取出该论文关键词。

第一个任务看作是一个文本二分类任务。机器需要根据对论文摘要等信息的理解,将论文划分为医学领域的文献和非医学领域的文献两个类别之一。第二个任务看作是一个文本关键词识别任务。机器需要从给定的论文中识别和提取出与论文内容相关的关键词。

数据解析

训练集与测试集数据为CSV格式文件,各字段分别是标题、作者和摘要。Keywords为任务2的标签,label为任务1的标签。训练集和测试集都可以通过pandas读取。

实践思路

任务一:文献领域分类

针对文本分类任务,可以提供两种实践思路,一种是使用传统的特征提取方法(如TF-IDF/BOW)结合机器学习模型,另一种是使用预训练的BERT模型进行建模。使用特征提取 + 机器学习的思路步骤如下:

  1. 数据预处理:首先,对文本数据进行预处理,包括文本清洗(如去除特殊字符、标点符号)、分词等操作。可以使用常见的NLP工具包(如NLTK或spaCy)来辅助进行预处理。

  2. 特征提取:使用TF-IDF(词频-逆文档频率)或BOW(词袋模型)方法将文本转换为向量表示。TF-IDF可以计算文本中词语的重要性,而BOW则简单地统计每个词语在文本中的出现次数。可以使用scikit-learn库的TfidfVectorizer或CountVectorizer来实现特征提取。

  3. 构建训练集和测试集:将预处理后的文本数据分割为训练集和测试集,确保数据集的样本分布均匀。

  4. 选择机器学习模型:根据实际情况选择适合的机器学习模型,如朴素贝叶斯、支持向量机(SVM)、随机森林等。这些模型在文本分类任务中表现良好。可以使用scikit-learn库中相应的分类器进行模型训练和评估。

  5. 模型训练和评估:使用训练集对选定的机器学习模型进行训练,然后使用测试集进行评估。评估指标可以选择准确率、精确率、召回率、F1值等。

  6. 调参优化:如果模型效果不理想,可以尝试调整特征提取的参数(如词频阈值、词袋大小等)或机器学习模型的参数,以获得更好的性能。

  7. 完整代码如下:

# 导入pandas用于读取表格数据import pandas as pd
# 导入BOW(词袋模型),可以选择将CountVectorizer替换为TfidfVectorizer(TF-IDF(词频-逆文档频率)),注意上下文要同时修改,亲测后者效果更佳from sklearn.feature_extraction.text import CountVectorizer
# 导入LogisticRegression回归模型from sklearn.linear_model import LogisticRegression
# 过滤警告消息from warnings import simplefilterfrom sklearn.exceptions import ConvergenceWarningsimplefilter("ignore", category=ConvergenceWarning)

# 读取数据集train = pd.read_csv('./基于论文摘要的文本分类与关键词抽取挑战赛公开数据/train.csv')train['title'] = train['title'].fillna('')train['abstract'] = train['abstract'].fillna('')
test = pd.read_csv('./基于论文摘要的文本分类与关键词抽取挑战赛公开数据/test.csv')test['title'] = test['title'].fillna('')test['abstract'] = test['abstract'].fillna('')

# 提取文本特征,生成训练集与测试集train['text'] = train['title'].fillna('') + ' ' +  train['author'].fillna('') + ' ' + train['abstract'].fillna('')+ ' ' + train['Keywords'].fillna('')test['text'] = test['title'].fillna('') + ' ' +  test['author'].fillna('') + ' ' + test['abstract'].fillna('')+ ' ' + train['Keywords'].fillna('')
vector = CountVectorizer().fit(train['text'])train_vector = vector.transform(train['text'])test_vector = vector.transform(test['text'])

# 引入模型model = LogisticRegression()
# 开始训练,这里可以考虑修改默认的batch_size与epoch来取得更好的效果model.fit(train_vector, train['label'])
# 利用模型对测试集label标签进行预测test['label'] = model.predict(test_vector)
# 生成任务一推测结果test[['uuid', 'Keywords', 'label']].to_csv('submit_task1.csv', index=None)
weixin151云匹面粉直供微信小程序+springboot后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值