树形背包模版-洛谷P1273 有线电视网

该博客主要讨论洛谷P1273问题,即树形背包模版。每个终端视为1体积的物品,重点解析了动态规划状态转移方程`dp[i][j]=max(dp[i][j],dp[i][j-k]+dp[v][k]-w)`。博主引用了CSDN上的题解,并解释了为何更新方程需要递归调用自身,以及为何要倒序枚举节点。博客指出,这个问题本质上是01背包问题的树形扩展。" 125129611,11390979,三菱PLC子程序应用详解,"['自动化', 'PLC编程', '三菱', '中断程序']
摘要由CSDN通过智能技术生成

https://www.luogu.org/problem/show?pid=1273
其实就是一个背包嘛,每个终端都是一个物品,体积全是1;
网上的题解很多,我copy一段
http://blog.csdn.net/qwsin/article/details/50954669
dp[i][j]表示i节点在其后代中选了j个的最大收入
dp[i][j]=max(dp[i][j],dp[i][j-k]+dp[v][k]-w)
相信大家都看得懂这个公示,但是也许你会有所疑惑;
这个更新方程需要调用它自己!
那我怎么可以保证dp[i][j-k]中我没有包含v这个子节点的情况;
还有为什么j要倒着枚举????;
其实呢,这个只不过是01背包的树版;
这相当与一维的01背包;
其实原先应该是dp[i][j][k]
表示第i个节点的前j个字节点中,我在第j个字节点选k个的最大最优情况;
把j这一个压缩掉就变成了一开始我们说的那个dp方程了;
所以呢,显然的一开始方程的j要倒着枚举,原理和一维的01背包是一样的;

#include<iostream>
洛谷P2240部分背包问题是一个经典的动态规划问题。问题描述是这样的:给定n种物品和一个容量为V的背包。每种物品都有自己的重量w[i]和价值v[i]。求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。 这里的“部分背包”意味着我们可以选择物品的一部分放入背包中。这里给出一个C++的基本解法示例: ```cpp #include <iostream> #include <algorithm> using namespace std; int dp[1010][1010]; // dp[i][j] 表示前i件物品在不超过j重量的情况下可以获得的最大价值 int main() { int n, V; cin >> n >> V; for(int i = 0; i <= n; ++i) { for(int j = 0; j <= V; ++j) { dp[i][j] = 0; // 初始化dp数组为0 } } for(int i = 1; i <= n; ++i) { int w, v; cin >> w >> v; for(int j = 1; j <= V; ++j) { if(j >= w) { // 如果当前物品重量不超过背包容量,考虑取与不取两种情况,取最大值 dp[i][j] = max(dp[i-1][j], dp[i-1][j-w] + v); } else { // 如果当前物品重量超过背包容量,则不能取这个物品 dp[i][j] = dp[i-1][j]; } } } cout << dp[n][V] << endl; // 输出最大价值 return 0; } ``` 这段代码首先初始化一个二维数组dp,其中dp[i][j]表示考虑前i件物品,当背包容量为j时能够得到的最大价值。之后,通过双层循环,从后往前遍历所有物品,并计算在不超过背包容量的情况下,每种物品的取与不取的最大价值,最终得到的最大价值存储在dp[n][V]中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值