单调栈——洛谷 P1565 牛宫

版权声明:表明出处(贴网址),可以转载 https://blog.csdn.net/largecub233/article/details/73776457

https://www.luogu.org/problem/show?pid=1565
单调栈总是和二分一起用;
我们可以枚举一个矩形的宽;
这个是n^2的时间;
那么我们如果可以求出这个宽对应的长的最大值那就好了;
我们何以通过把前缀和放到单调栈里面去二分就可以n*logn啦;

这次压行有点过分,不要在意….、

#include<bits/stdc++.h>
#define Ll long long
using namespace std;
const int N=205;
Ll a[N][N],q[N],Q[N];
Ll n,m,ans,sum,top;
int er(Ll sum){
    int mid,l=0,r=top,ans=1e9;
    while(r>=l){
        mid=l+r>>1;
        if(q[mid]<sum)ans=mid,r=mid-1;else l=mid+1;
    }
    if(ans==1e9)return -1;return Q[ans];
}
int main()
{
    scanf("%lld%lld",&n,&m);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++){
            scanf("%lld",&a[i][j]);
            a[i][j]+=a[i-1][j];
        }
    for(int x=1;x<=n;x++)
        for(int j,y=n;y>=x;y--)
            if((y-x+1)*m>ans)
                for(top=sum=0,j=1;j<=m;j++){
                    sum+=a[y][j]-a[x-1][j];
                    int k=er(sum);
                    if(k!=-1)ans=max(ans,(Ll)(y-x+1)*(j-k));
                    if(q[top]>sum)q[++top]=sum,Q[top]=j;
                }
    printf("%lld",ans);
}
阅读更多
换一批

没有更多推荐了,返回首页