递归算法中的超时问题解决方法

一、前言

数据结构里边,在经典的树的前中后序遍历、斐波那契数列问题中,我们使用递归实现,简单明了。然而前者使用了大量的栈内存,后者包含大量的重复计算,因此效率极低。这种思想,应用到算法问题解决中,会不可避免地出现超时现象。

如何保证简洁明了的同时,提高效率呢?

二、解决方法

下面以经典的斐波那契数列为例,给出各类通用的解决方案,使用算法主流语言 Python 实现:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368…

def fib1(n: int):
    if n <= 2:
        return 1
    return fib1(n - 1) + fib1(n - 2)

结果:当 n = 40 时,时间 10s 过去了,结果还没计算出来(超时)
原因:太多重复计算

1.记忆化搜索

改进1:使用一个数组,存放曾经计算过的结果,下次遇到同样的计算,直接获取结果。

def fib2(n: int):
    if n <= 2:
        return 1
    memo = [-1] * n
    memo[0] = memo[1] = 1
    for i in range(2, n):
        memo[i] = memo[i - 1] + memo[i - 2]
    return memo[n - 1]

结果1:去除了常规递归写法的重复计算,没有超时,但占用O(n)的内存空间。

2.缓存

改进2:缓存每次新计算的结果,不要一上来,就申请O(n)的空间。

from functools import lru_cache
@lru_cache(10 ** 8)
def fib3(n: int):
    if n <= 2:
        return 1
    return fib3(n - 1) + fib3(n - 2)

结果2:效果和1中的差不多,但思路和常规递归一样清晰,空间占用稍少。

这里使用了 Python 语言,一个注解就解决了问题,简直开了挂。
但自己实现也不难,Python 可以使用一个字典来缓存计算结果,Java可有使用一个 HashMap 来缓存计算结果,都可以达到同样的效果。

3.递推

改进3:使用两个变量,存储计算的结果即可,一直往后递推

def fib4(n: int):
    if n <= 2:
        return 1
    a, b = 1, 1
    for _ in range(2, n):
        a, b = b, a + b
    return b

结果3:省内存、省时间,但是不是那么通用。

三、实战

下面以一道清华大学计算机考研复试上机题为例 —— 递推数列 ,演示秒杀绝技 ~
https://www.nowcoder.com/practice/d0e751eac618463bb6ac447369e4aa25?tpId=40&tqId=21352&tPage=1&rp=1&ru=%2Fta%2Fkaoyan&qru=%2Fta%2Fkaoyan%2Fquestion-ranking
在这里插入图片描述

a0, a1, p, q, k = map(int, input().split())

from functools import lru_cache


@lru_cache(10 ** 8)  # 没有加上,为上图结果,加上,为下图结果
def get(n: int):
    if n == 0:
        return a0
    if n == 1:
        return a1
    return p * get(n - 1) % 10000 + q * get(n - 2) % 10000


print(get(k) % 10000)

在这里插入图片描述
很多网友都使用记忆化搜索来解决,思路错综复杂,代码凌乱不堪 ~

四、小结

生活问题解决上,推荐使用注解式缓存的解决方法,因其他算法,需要再常规思路的基础上,做小规模的修改,而注解式缓存,只是在常规递归的基础上,加一个注解(或者自行hash)就完事了,且为通法。

至于项目中,则要具体情况,考虑时间复杂度、空间复杂度的最优解。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT小村

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值